TO THE BIRMAN–KREIN–VISHIK THEORY

Author:

Malamud M. M.12

Affiliation:

1. Peoples' Friendship University of Russia

2. St. Petersburg State University

Abstract

Let A ≥ mA 0 be a closed positive definite symmetric operator in a Hilbert space ℌ, let \({{\hat {A}}_{F}}\) and \({{\hat {A}}_{K}}\) be its Friedrichs and Krein extensions, and let ∞ be the ideal of compact operators in ℌ. The following problem has been posed by M.S. Birman: Is the implication A–1 ∈ G∞ ⇒ (\({{\hat {A}}_{F}}\) )–1 ∈ G∞(ℌ) holds true or not? It turns out that under condition A–1 ∈ G∞ the spectrum of Friedrichs extension \({{\hat {A}}_{F}}\) might be of arbitrary nature. This gives a complete negative solution to the Birman problem.Let \(\hat {A}_{K}^{'}\) be the reduced Krein extension. It is shown that certain spectral properties of the operators (\({{I}_{{{{\mathfrak{M}}_{0}}}}}\) + \(\hat {A}_{K}^{'}\))–1 and P1(I + A)–1 are close. For instance, these operators belong to a symmetrically normed ideal G, say are compact, only simultaneously. Moreover, it turns out that under a certain additional condition the eigenvalues of these operators have the same asymptotic.Besides we complete certain investigations by Birman and Grubb regarding the equivalence of semiboubdedness property of selfadjoint extensions of A and the corresponding boundary operators.

Publisher

The Russian Academy of Sciences

Reference15 articles.

1. Ахиезер Н.И., Глазман И.М. Теория линейных операторов в гильбертовых пространствах. Т. 2. Москва: Наука, 1978.

2. Alonso A., Simon B. // J. Operator Theory. 1980. V. 4. P. 251–270.

3. Ashbaugh M.S., Gesztesy F., Mitrea M., Teschl G. // Adv. Math. 2010. V. 223. 1372–1467.

4. Бирман М.Ш. // Матем. сб. 1956. Т. 38 (80). № 4. С. 431–450.

5. Бирман М.Ш., Соломяк М.З. Спектральная теория самосопряженных операторов в гильбертовом пространстве. Санкт-Петербург: Лань, 2010. 458 с.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3