DEGENERATION ESTIMATION OF A TETRAHEDRAL IN A TETRAHEDRAL PARTITION OF THE THREE-DIMENSIONAL SPACE

Author:

Kriksin Yu. A.1,Tishkin V. F.1

Affiliation:

1. Keldysh Institute of Applied Mathematics of Russian Academy of Sciences

Abstract

Based on the geometric characteristics of the tetrahedron, quantitative estimates of its degeneracy are proposed and their relationship with the condition number of local bases generated by the edges emerging from the same vertex is established. The concept of the tetrahedron degeneracy index is introduced in several versions and their practical equivalence to each other is established. To assess the quality of a particular tetrahedral partition, it is proposed to calculate the empirical distribution function of the degeneracy index on its tetrahedral elements. A model irregular triangulation (tetrahedralization or tetrahedral partition) of three-dimensional space is proposed, depending on the control parameter that determines the quality of its elements. The coordinates of the tetrahedra vertices of the model triangulation tetrahedrons are the sums of the corresponding coordinates of the nodes of some given regular grid and random increments to them. For various values of the control parameter, the empirical distribution function of the tetrahedron degeneration index is calculated, which is considered as a quantitative characteristic of the quality of tetrahedra in the triangulation of a three-dimensional region.

Publisher

The Russian Academy of Sciences

Reference12 articles.

1. Gallagher R.H. Finite Element Analysis: Fundamentals. Berlin, Heidelberg: Springer-Verlag 1976. 396 c.

2. Fletcher C.A.J. Computational Galerkin methods. NY, Berlin, Heidelberg, Tokio: Springer-Verlag, 1984. 309 c.

3. Cockburn B., Shu C.-W. The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems // Journal of Computational Physics, 1998, V. 141, C. 199–224. https://doi.org/10.1006/jcph.1998.5892

4. Sugihara K. Degeneracy and Instability in Geometric Computation. In: Kimura, F. (eds) Geometric Modelling. GEO 1998. IFIP V. 75. Boston: Springer, 2001, C. 3–17. https://doi.org/10.1007/978-0-387-35490-3_1

5. Василевский Ю.В., Данилов А.А., Липников К.Н., Чугунов В.Н. Автоматизированные технологии построения неструктурированных расчетных сеток. “Нелинейная вычислительная механика прочности.” Т. IV. Под общ. ред. В.А. Левина. Москва: Физматлит, 2016. 216 с.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3