Affiliation:
1. Ural Federal University
Abstract
We consider Bernstein inequality for the Riesz derivative of order \(0 \alpha 1\) of entire functions of exponential type in the uniform norm on the real line. The interpolation formula for this operator is obtained; this formula has non-equidistant nodes. By means of this formula, the sharp Bernstein inequality is obtained for all \(0 \alpha 1\), more precisely, the extremal entire function and the exact constant are written out.
Publisher
The Russian Academy of Sciences
Reference21 articles.
1. Горбачев Д.В. Точные неравенства Бернштейна – Никольского для полиномов и целых функций экспоненциального типа // Чебышевский сборник. 2021. Т. 22. № 5. С. 58–110. https://doi.org/10.22405/2226-8383-2021-22-5-58-110
2. Арестов В.В. Об интегральных неравенствах для тригонометрических полиномов и их производных // Изв. АН СССР. Сер. Мат. 1981. Т. 45. № 1. С. 3–22.
3. Арестов В.В., Глазырина П.Ю. Неравенство Бернштейна – Сеге для дробных производных тригонометрических полиномов // Тр. ИММ УрО РАН. 2014. Т. 20. № 1. С. 17–31.
4. Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и производные дробного порядка и некоторые их приложения. Минск: Наука и техника. 1987.
5. Civin P. Inequalities for trigonometric integrals // Duke Math. J. 1941. V. 8. № 4. P. 656–665. https://doi.org/10.1215/S0012-7094-41-00855-4
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献