Affiliation:
1. Krasovskii Institute of Mathematics and Mechanics UB RAS
2. Ural Federal University
Abstract
We consider variational inequalities with invertible operators in divergence form and constraint set a.e. in where is a nonempty bounded open set in , , and are measurable functions. Under the assumptions that the operators G-converge to an invertible operator , , and there exist functions such that a.e. in and we establish the weak convergence in of the solutions of the specified variational inequalities to the solution of a similar variational inequality with the operator and the constraint set The fundamental difference between the considered case and the previously studied case, where is that, in general, the functionals do not converge to even weakly in and the energy integrals do not converge to .
Publisher
The Russian Academy of Sciences
Reference12 articles.
1. Spagnolo S. Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche // Ann. Sc. Norm. Super. Pisa. Cl. Sci. (3). 1968. Vol. 22. No. 4. P. 571–597.
2. Жиков В.В., Козлов С.М., Олейник О.А., Ха Тьен Нгоан. Усреднение и G-сходимость дифференциальных операторов // УМН. 1979. Т. 34. № 5 (209). С. 65–133.
3. Панков А.А. Об усреднении и G-сходимости нелинейных эллиптических операторов дивергентного вида // Докл. АН СССР. 1984. Т. 278. № 1. С. 37–41.
4. Pankov A. G-Convergence and Homogenization of Nonlinear Partial Differential Operators. Mathematics and its Applications. V. 422. Dordrecht: Kluwer Academic Publishers, 1997.
5. Ковалевский А.А. G-сходимость и усреднение нелинейных эллиптических операторов дивергентного вида с переменной областью определения // Изв. РАН. Сер. матем. 1994. Т. 58. № 3. С. 3–35.