Pattern Recognition in the Tasks of Landform Mapping

Author:

Kharchenko S. V.12

Affiliation:

1. Moscow State University

2. Institute of Geography, Russian Academy of Sciences

Abstract

The article aims to show the modern state of pattern recognition techniques for automatic and semi-automatic geomorphological mapping. There is opinion among the geomorphometrists about the expert rules for traditional landform mapping can be quantitated. The general unsolved tasks of automatic landform mapping are: recognition of origin for morphologically similar Earth’s surface forms; criteria development for transfer from morphological to genetic and age landform’s characteristics; preventive choosing the optimal resolution of the remote sensing data; the choosing and rationale of predictor’s weights in statistical modeling procedures. Some cases of the pattern recognition techniques using in geomorphology and landform mapping are given: generalized linear models; classification trees; random forest; artificial neural networks; and computer vision methods. The overall accuracy of the different models according to planar continuous landform recognition (and recognition of lithology types too) is about 50–70% and more. At the same time, specific landform type’s (craters, volcanic cones and others) recognition can reach 90–100%.

Publisher

The Russian Academy of Sciences

Reference46 articles.

1. Гаврилов А.А. О природе явлений геоморфологической конвергенции и гомологии // Вестн. Моск. ун-та. Сер. 5: География. 2016. № 4. С. 3–12.

2. Геоморфологическая карта Мурманской области / сост. М.К. Граве, Л.М. Граве / Атлас Мурманской области. М.: ГУГК, 1971. С. 8.

3. Крамбейн У., Грейбилл Ф. Статистические модели в геологии. М.: Мир, 1969. 400 с.

4. Ласточкин А.Н. Морфодинамический анализ. Ленинград: Недра, 1987. 256 с.

5. Лобанов В.В. Еще раз об “элементарной морфологической единице”, ее содержании и методике установления // Геоморфология. 1988. № 4. С. 29–34.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3