STRUCTURE OF MOLTEN MX–NdX<sub>3</sub> (M – Na, K, Rb, Cs; X – F, Cl) SALTS: AN <i>ab initio</i> STUDY

Author:

Stulov Yu. V.1,Antipov S. V.1,Kuznetsov S. A.1

Affiliation:

1. Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences”

Abstract

The paper presents an ab initio study of neodymium containing clusters modeling the structure of corresponding molten salts. The relevance of such study is dictated by development of new methodologies and technologies for processing electronic and magnetic wastes, which are a valuable source of rare earth metals. In turn, quantum chemical calculations provide a powerful tool for investigation of structural features of model systems mimicking high temperature molten salts. In the present study, the simulations are performed within the Hartree–Fock and density functional theory approaches using the Firefly 8.20 software package. We propose a methodology for calculation of interaction energies in ternary systems including the neodymium complex, the outer-sphere cation shell, and the rest of the cluster. The interaction energies between the neodymium complex and other parts of a system are calculated. The dependence of interaction energies on the number of outer-sphere cations is investigated and the most stable “neodymium complex + outer-sphere shell” structures are determined. The calculated data are compared to direct spectroscopic investigations available in literature. The obtained interatomic Nd–X (X – F, Cl) distances coincide with experimentally deduced values. The computed Raman spectra for the 18MCl + M3NdCl6 (M – Na, K, Rb, Cs) model systems demonstrate a good agreement between calculated and experimentally observed positions of the most intense peak. Therefore, the chosen systems provide a reliable minimalistic model for quantum chemical investigations of molten salts structure.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3