INVESTIGATION OF THE MECHANISM OF LANTHANUM IONS ELECTROREDUCTION ON NICKEL ELECTRODE IN CHLORIDE MELT

Author:

Kushkhov Kh. B.1,Kisheva F. A.1,Vindizheva M. K.1,Mukozheva R. A.1,Kozhemova K. R.1,Beroeva L. M.1

Affiliation:

1. Kabardino-Balkarian State University named after H.M. Berbekov

Abstract

The electrochemical behavior of lanthanum ions on a nickel electrode has been studied using various electrochemical methods such as cyclic voltammetry, chronopotentiometry, open circuit chronopotentiometry (on-off curves), and square wave voltammetry in an equimolar melt of potassium and sodium chlorides at 973 K. The cyclic voltammetry curves has several reduction waves on the cathodic branch and corresponding oxidation waves on the anodic branch. The first wave A is located in the potential region –(0.0–0.1) V, where the reduction of Ni2+ ions takes place. The second wave B is in the region of potentials –(1.72–1.77) V, on it occurs electroreduction of ions \({\text{LaCl}}_{6}^{{3 - }}\) on nickel electrode with certain depolarization with formation of intermetallide of lanthanum with nickel LaxNiy. The appearance of the third wave C in the potential region –(2.09–2.13) V, we associate with the electroreduction of chloride complexes \({\text{LaCl}}_{6}^{{3 - }}\) on intermetallide LaxNiy with the formation of metallic lanthanum. On the basis of the obtained data it is shown that during the electroreduction of lanthanum chloride complexes in KCl–NaCl melt at T = 973K the nickel electrode interacts with the released lanthanum, causing a significant depolarization of the process of electroreduction of the chloride complex, also formation of intermetallide with Ni electrode occurs.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3