THE THERMAL CONDUCTIVITY OF MOLTEN MIXTURES OF СeCl<sub>3</sub>–MCl (M = Li, Na, K, Cs) SYSTEMS

Author:

Bobrova K. O.1,Dokytovich V. N.1

Affiliation:

1. Institute of High Temperature Electrochemistry of the UB RAS

Abstract

The paper presents experimental data on the thermal conductivity of molten salt mixtures СeCl3–MCl, where M = Li, Na, K, Cs. The concentration of cerium trichloride varies from 0.25 to 0.75 mole percent in 0.25 increments. The initial salts of alkali metal chlorides were certified by DSC. The obtained values of melting temperatures are in good agreement with the literature data. Anhydrous cerium trichloride was obtained from cerium(IV) oxide in 2 stages: preparation of cerium crystalline hydrate and removal of water of crystallization. The measurements were carried out by the stationary method of coaxial cylinders in a nickel device in the temperature range individually selected for each composition. The relative measurement error does not exceed 5%. In this work, the convective and radiative contributions to heat transfer were estimated. The value of the product of Prandtl and Grashof numbers is less than 1000, which confirms the absence of convection. The calculated radiative contribution to heat transfer does not exceed 2.4%. The thermal conductivity of all investigated melts increases with increasing temperature. The concentration dependences of molten mixtures of cerium and alkali metal chlorides were obtained. The thermal conductivity decreases upon passing from Li to Cs, which is due to an increase in the radius of the alkali metal cation and, as a consequence, an increase in the interionic distance.

Publisher

The Russian Academy of Sciences

Reference37 articles.

1. Komarov V.Ye., Smolenskiy V.V., Afonichkin V.K. Perspektivy ispol’zovaniya rasplavlennykh soley v radiokhimicheskikh tekhnologiyakh [Prospects for the use of molten salts in radiochemical technologies] // Rasplavy. 2000. № 2. Р. 59–65. [In Russian].

2. Ogawa T., Igarashi M. Pyrochemical process in advanced nuclear programs – with emphasis on management of long-lived radionuclides, in: M. Gaune-Escard (Ed.) // Advances in Molten Salts. From Structural Aspects to Waste Processing, Begell House Inc., New York, Wallingford, 1999. P. 454–463.

3. Inoue T., Sakamura Y., Iizuka M., Kinoshita K., Usami T., Kurata M., Yokoo T. Actinides recycle by pyrometallurgy in nuclear fuel cycle // Molten Salts XIII. Proc of Int. Symp. Electrochemical Society. Proceedings 2002-19. 2002. P. 553–562.

4. Uozumi K., Sakamura Y., Kinoshita K., Hijikata T., Inoue T., Koyama T. Development of pyropartitioning process to recover minor actinide elements from high level liquid waste // Energy Procedia. 2011. 7. P. 437–443.

5. Venneri F., Bowman C. Accelerator-driven systems and fast reactors in advanced nuclear fuel cycles // A Comparative Study, Rep. OCDE/NEA. 2002.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3