ELECTROREFINING OF URANIUM ALLOYS CONTAINING PALLADIUM AND NEODYMIUM IN 3LiCl–2KCl–UCl<sub>3</sub> MELTS

Author:

Nikitin D. I.1,Polovov I. B.1,Rebrin O. I.1

Affiliation:

1. Ural Federal University

Abstract

The technology of pyrochemical processing of mixed nitride uranium-plutonium spent fuel, realizable at the experimental and demonstration energy complex of the site of the Siberian Chemical Plant, includes several operations with the ultimate goal of isolating the target fission products. It’s planned to use the electrofining of the products of the previous stage, metallized spent nuclear fuel, аs the penultimate stage of processing. It’s necessary to determine the processes and technological modes of electrolytic refining of alloys modeling the product of this stage of the processing module to implement electrolytic refining. This paper presents the results of electrofining of model alloys (simulating the raw materials of the stage of electrofining processing) on an enlarged laboratory electrolyzer. The initial parameters of uranium refining processes in melts based on 3LiCl–2KCl–UCl3 were determined earlier. The basic parameters of refining were the use of electrolyte 3LiCl–2KCl–UCl3 (10.1 wt % UCl3) and conducting experiments at 550°C. Uranium alloys containing palladium and neodymium were prepared by direct fusion of uranium metal, PdAP-1 grade palladium metal powders and neodymium metal (99.99%) in a medium of high-purity argon (99.998%). The data obtained showed that at a temperature of 550°C, cathode precipitates are typical dendritic forms of alpha-uranium in rhombic syngony with a tendency to needle formation with an increase in cathode current density. An increase in the company time and cathode current density leads to a decrease in the current output due to short-circuiting of the electrodes with cathode sediment needles or metal shedding from the cathode. The modes of the cathode process have been experimentally refined as a result of electrofining. When electrofining alloys U–Pd(1.59 wt %), U–Pd(1.62 wt %), U–Pd(1.54 wt %), U–Pd(1.58 wt %)–Nd(5.64 wt %), U–Pd(1.84 wt %)–Nd(6.49 wt %), U–Pd(1.79 wt %)–Nd(6.54 wt %), uranium cathode precipitates were obtained, which were subjected to chemical analysis, which showed the high purity of the resulting metallic uranium, as well as the absence of metallic palladium and molybdenum in it. The palladium purification coefficient exceeds 5000, the neodymium purification coefficient exceeds 1000, which meets the requirements for purification from fission products at this stage of pyrochemical processing of spent fuel. Palladium accumulates in anode slime, while the bulk of neodymium passes into the molten electrolyte.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3