The Influence of Small Variations of Plasma Density on Conditions of Propagation of Electromagnetic Waves of the Whistle Range through the Morning Ionosphere

Author:

Mizonova V. G.12,Bespalov P. A.23

Affiliation:

1. Alekseev Nizhny Novgorod State Technical University, 603155, Nizhny Novgorod, Russia

2. National Research University “Higher School of Economics”, 603155, Nizhny Novgorod, Russia

3. Institute of Applied Physics, Russian Academy of Sciences, 603155, Nizhny Novgorod, Russia

Abstract

The problem of the effect of plasma-density disturbances caused by infrasonic waves on the propagation and reflection of whistler electromagnetic waves incident on the morning ionosphere from above is considered. The influence of the parameters of an infrasonic wave on the coefficient of reflection of a whistler wave from the ionosphere from above in the general case of oblique propagation is studied. The strongest changes in the reflection coefficient of whistler waves are associated with concentration perturbations at heights of the order of 80–100 km, where the rate of decay of propagating electromagnetic radiation modes increases by more than an order of magnitude within a region that is quite local in height (less than 10–15 km). The features of the parametric effect of plasma density fluctuations in an infrasonic wave on the field of a whistler wave that reached the Earth’s surface are analyzed. At close values of the horizontal wavenumbers of the whistler and infrasonic waves, the field of the whistler wave near the Earth’s surface can increase by several times. The results obtained are important for understanding the relationship between magnetospheric wave processes of different nature. The study of the modulation of the coefficient of reflection of whistler waves from the ionosphere by infrasonic waves from above is relevant for explaining the operating modes of a plasma magnetospheric maser.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3