Affiliation:
1. Central Siberian Botanical Garden SB RAS
Abstract
Abstract—A comparative analysis of the main classes of biologically active polyphenols in extracts from the leaves of the medicinal species Spiraea chamaedryfolia L. (Rosaceae) and Lonicera caerulea L. (Caprifoliaceae) was performed. The features related to the macro- and trace elements’ content in soil and phytomass in coenopopulations of the Mountain Altai at the site with sporadic occurrence of serpentinites were studied. In the S. chamaedryfolia leaves high performance liquid chromatography identified 16 polyphenolic compounds. These polyphenols were attributed to different classes, namely phenol-carboxylic acids (3), flavonols (10), flavons (2) and one flavanon. As for the L. caerulea leaves, the analysis confirmed their polyphenolic composition, measured earlier, i.e. the presence of hydroxycinnamic acids, flavonols and flavons; but additionally, one more compound, identified as flavanone, was found. The study revealed species-specific shifts in plant secondary metabolism in response to specific edaphic properties and the level of macro- and trace elements accumulation in the leaves of plants, growing in the area with a natural geochemical anomaly.
Publisher
The Russian Academy of Sciences
Reference32 articles.
1. Brunetti C., Fini A., Sebastiani F., Gori A., Tattini M. 2018. Modulation of phytohormone signaling: A primary function of flavonoids in plant–environment interactions. – Front. Pl. Sci. 9: 1042. https://doi.org/10.3389/fpls.2018.01042
2. Bautista I., Boscaiu M., Lidón A. Llinares J.V., Lull C., Donat M.P., Mayoral O., Vicente O. 2016. Environmentally induced changes in antioxidant phenolic compounds levels in wild plants. – Acta Physiol. Plant. 38(1): 9. https://doi.org/10.1007/s11738-015-2025-2
3. Michalak A. 2006. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. – Pol. J. Environ. Stud. 15(4): 523–530. http://www.pjoes.com/pdf-87899-21758?filename=Phenolic%20Compounds%20and.pdf
4. Kumarathilaka P., Dissanayake C., Vithanage M. 2014. Geochemistry of serpentinite soils: A brief overview. – J. Geol. Soc. Sri Lanka. 16: 53–63. http://viduketha.nsf.gov.lk:8585/slsijn/JGSSL-VOL-16-2014/JGSSL-VOL-16-2014-53.pdf
5. Marescotti P., Comodi P., Crispini L., Gigli L., Zucchini A., Fornasaro S. 2019. Potentially toxic elements in ultramafic soils: A study from metamorphic ophiolites of the Voltri Massif (Western Alps, Italy). – Minerals. 9(8): 502. https://doi.org/10.3390/min9080502
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献