Phase Separation of Purified Human LSM4 Protein

Author:

Li H.1,Ju Y.2,Liu W. W.1,Ma Y. Y.3,Ye H.3,Li N.3

Affiliation:

1. Health Care Office, Service Bureau of The General Administration of Affairs, The Central Military Commission

2. Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese People’s Liberation Army General Hospital

3. Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital

Abstract

Liquid–liquid phase separation of proteins occur in a number of biological processes, such as regulation of transcription, processing, and RNA maturation. Sm-like protein 4 (LSM4) is involved in multiple processes, including pre-mRNA splicing and P-bodies assembly. Before investigating the involvement of LSM4 in the separation of the two liquid phases during RNA processing or maturation, the separation of the liquid phases in an in vitro preparation of LSM4 protein should be first be detected. The mCherry-LSM4 plasmid was derived from pET30a and used to isolate mCherry-LSM4 protein from prokaryotic cells (Escherichia coli strain BL21). The mCherry-LSM4 protein was purified using Ni-NTA resin. The protein was further purified by fast protein liquid chromatography. Delta-Vision wide-field fluorescence microscopy was used to observe the dynamic liquid–liquid phase separation of the LSM4 protein in vitro. Analysis of the LSM4 protein structure using the Predictor of Natural Disordered Regions database revealed that its C-terminus contains a low complexity domain. A purified preparation of full-length human LSM4 protein was obtained from E. coli. Human LSM4 was shown to provide concentration-dependent separation of liquid–liquid phases in vitro in buffer with crowding reagents. Salts in high concentration and 1,6-hexanediol block the LSM4-induced separation of the two liquid phases. In addition, in vitro fusion of LSM4 protein droplets is observed. These results indicate that the full-length human LSM4 protein has the ability to form liquid inclusions and induce liquid–liquid phase separation in vitro.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3