Molecular Mechanisms to Optimize Gene Translation Elongation Differ Significantly in Bacteria with and without Non-Ribosomal Peptides

Author:

Klimenko A. I.1,Lashin S. A.1,Kolchanov N. A.1,Afonnikov D. A.1,Matushkin Yu. G.1

Affiliation:

1. Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences

Abstract

Non-ribosomal peptides play an important role in the vital activity of bacteria and have an extremely broad field of biological activity. In particular, they act as antibiotics, toxins, surfactants, siderophores, and also perform a number of other specific functions. Biosynthesis of these molecules does not occur on ribosomes but by special enzymes that form gene clusters in bacterial genomes. We hypothesized that the presence of non-ribosomal peptide synthesis pathways is a specific feature of bacterial metabolism, which may affect other vital processes of the cell, including translational ones. This work was the first to show the relationship between the translation regulation mechanism of protein-coding genes in bacteria, which is largely determined by the efficiency of translation elongation, and the presence of gene clusters in the genomes for the biosynthesis of non-ribosomal peptides. Bioinformatic analysis of the translation elongation efficiency of protein-coding genes was performed in 11679 bacterial genomes, some of which contained gene clusters of non-ribosomal peptide biosynthesis and some of which did not. The analysis showed that bacteria whose genomes contained clusters of non-ribosomal peptide biosynthetic genes and those without such gene clusters differ significantly in the molecular mechanisms that ensure translation efficiency. Thus, among microorganisms whose genomes contain gene clusters of non-ribosomal peptide synthetases, a significantly smaller part of them is characterized by optimized regulation of the number of local inverted repeats, while most of them have genomes optimized by the averaged energy of inverted repeats studs in mRNA and additionally by codon composition. Our results suggest that the presence of non-ribosomal peptide biosynthetic pathways in bacteria may influence the structure of the overall bacterial metabolism, which is also expressed in the specific mechanisms of ribosomal protein biosynthesis.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3