Methylophiopogonanone A Inhibits LPS/ATP-Induced Macrophage Pyroptosis via ROS/NLRP3 Pathway

Author:

Zeng H. B.1,Zhang L. H.1,Yuan D. P.1,Wang W.2,Su X. M.1,Weng W. X.1,Miao R.1,Xu J. Y.1,Long J.1,Song Y. H.3

Affiliation:

1. Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine

2. Affiliated Hospital of Nanjing University of Chinese Medicine

3. Department of Cardiology, Nanjing Hospital of Chinese Medicine Affilicated to Nanjing University of Chinese Medicine

Abstract

As a byproduct of mitochondrial respiration or metabolism, reactive oxygen species (ROS) can act as a signaling molecule to activate NLR family pyrin domain containing 3 (NLRP3) inflammasome, thereby triggering immune response. NLRP3 inflammasome acts as a sensor of various danger signals and is central to the control of pyroptosis occurrence. Macrophage pyroptosis is closely related to atherosclerosis, arthritis, pulmonary fibrosis and other inflammatory diseases. Methylophiopogonanone A (MO-A) is a main homoisoflavonoid in Chinese herb Ophiopogonis Radix, which has antioxidant effect. However, it is not clear whether MO-A can alleviate macrophage pyroptosis by inhibiting oxidative stress. Here we have shown that MO-A increases the activities of superoxide dismutase (SOD) and catalase (CAT), inhibits the production of ROS, reduces the activation of NLRP3 inflammasome and the release of lactate dehydrogenase (LDH), and inhibits pyroptosis in macrophages induced by lipopolysaccharides (LPS) and adenosine triphosphate (ATP). These effects can be reversed by the ROS promoter hydrogen peroxide (H2O2). Therefore, MO-A can inhibit macrophage pyroptosis through the ROS/NLRP3 pathway and may be considered as a candidate drug for the treatment of inflammatory diseases.

Publisher

The Russian Academy of Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3