Analysis of the relationship between <i>Cxcl12, Tweak, Notch1 and Yap1</i> mRNA expression in the molecular mechanisms of liver fibrogenesis

Author:

Lebedeva E. I.1,Shchastniy A. T.1,Babenka A. S.2,Zinovkin D. А.3

Affiliation:

1. Vitebsk State Order of Peoples’ Friendship Medical University

2. Belarussian State Medical University

3. Gomel State Medical University

Abstract

Currently, data on the molecular mechanisms of fibrosis and cirrhosis of the liver do not allow us to fully understand all the stages in the development of these pathological processes. It is known that individual genes and signaling pathways do not function independently. Relations between them play a huge role in the implementation of their functions. Due to the complexity of studying this factor, information about their relationship is insufficient and often contradictory. In the present work, for the first time at different stages of thioacetamide-induced fibrosis in the liver of Wistar rats, mRNA expression of Notch1, Notch2, Yap1, Tweak (Tnfsf12), Fn14 (Tnfrsf12a), Ang, Vegfa, Cxcl12 (Sdf), Nos2, and Mmp-9 genes was studied in detail. Using factor analysis, three factors were obtained that combined highly correlated target genes with each other. The first factor includes four genes: Cxcl12 (r = 0.829, p 0.05), Tweak (r = 0.841, p 0.05), Notch1 (r = 0.848, p 0.05), Yap1 (r = 0.921, p 0.05). The second factor describes the correlations between the Mmp-9 (r = 0.791, p 0.05) and Notch2 (r = 0.836, p 0.05) genes. The third factor included genes Ang (r = 0.748, p 0.05) and Vegfa (r = 0.679, p 0.05). The Nos2 and Fn14 genes were not included in any of the factors. The selected genes classified on the basis of mRNA expression levels suggest that their products have a pathogenetic relationship in the processes of fibrotic changes in the liver of toxic etiology. Undoubtedly, the results obtained are of fundamental interest and require further expansion in the study of fibrosis and cirrhosis of the liver.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3