Inactivation of Ras1 in Fission Yeast Aggravates the Oxidative Stress Response Induced by Tert Butyl Hydroperoxide (tBHP)

Author:

Masood N.1,Anjum S.2,Ahmed S.2

Affiliation:

1. Biochemistry and Structural Biology Division, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road

2. Academy of Scientific and Innovative Research (AcSIR)

Abstract

Ras proteins are small GTPases and function as molecular switches to regulate cellular homeostasis. Ras-dependent signalling pathways regulate several essential processes such as cell cycle progression, growth, migration, apoptosis, and senescence. The dysregulation of Ras signaling pathway has been linked to several pathological outcomes. A potential role of RAS in regulating the redox signalling pathway has been established that includes the manipulation of ROS levels to provide a redox milieu that might be conducive to carcinogenesis. Reactive oxygen species (ROS) and mitochondrial impairment have been proposed as major factors affecting the physiology of cells and implicated in several pathologies. The present study was conducted to evaluate the role of Ras1, tert Butyl hydroperoxide (tBHP), and antimycin A in oxidative stress response in Schizosaccharomyces pombe cells. We observed decreased cell survival, higher levels of ROS, and mitochondrial dysfunctionality in ras1Δ cells and tBHP as well as respiratory inhibitor, antimycin A treated wild type cells. Furthermore, these defects were more profound in ras1Δ cells treated with tBHP or antimycin A. Additionally, Ras1 also has been shown to regulate the expression and activity of several antioxidant enzymes like glutathione peroxidase (GSH-Px), glutathione-S-transferase (GST), and catalase. Together, these results suggest the potential role of S. pombe Ras1 in mitigating oxidative stress response.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3