Eksperimental'noe issledovanie peredatochnoy funktsii prototipa sverkhprovodyashchego gauss-neyrona

Author:

Ionin A. S.12,Karelina L. N.1,Shuravin N. S.1,Sidel'nikov M. S.1,Razorenov F. A.12,Egorov S. V.1,Bol'ginov V. V.1

Affiliation:

1. Osipyan Institute of Solid State Physics, Russian Academy of Sciences

2. Moscow Institute of Physics and Technology (National Research University)

Abstract

The transfer function of a shunted two-junction interferometer, which was previously proposed as a basic element of superconducting neural networks based on radial basis functions, has been measured for the first time. The sample has been implemented in the form of a multilayer thin-film structure over a thick superconducting screen with the inductive supply of an input signal and the readout of an output signal. It has been found that the transfer function is the sum of the linear and periodic bell-shaped components. The linear component is likely due to the direct transfer of the input magnetic flux to the measuring circuit. The shape of the nonlinear component, which is the output signal of a Gauss neuron, can be approximately described by a Gaussian distribution function or, more precisely, by a parametric dependence derived theoretically in previous works. It has been shown that the transfer function of the Gauss neuron can depend on the choice of the working point of the measuring circuit, which promotes the development of integrated neural networks based on implemented elements.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3