Affiliation:
1. Moscow Institute of Physics and Technology (National Research University)
2. Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences
3. Skolkovo Institute of Science and Technology
Abstract
Using a simple theoretical model, AB-stacked bilayer graphene deposited on a ferromagnetic insulating substrate is studied. In addition to the exchange Zeeman field induced by the substrate, the model allows one to take into account the effective external electric field perpendicular to the graphene sample plane (such field arises due to the contact with the substrate and can also be induced by applying a gate voltage). It has been demonstrated that AB-stacked graphene in zero electric field is in a metallic state. As the field increases, a transition to the insulating phase occurs. The spectrum of electron states, the band gap, and other characteristics of the phases on both sides of the metal−insulator transition have been calculated. Our results are consistent with density functional theory calculations and can be useful for spintronics.
Publisher
The Russian Academy of Sciences