Affiliation:
1. Institute for Water Problems of the North, Karelian Research Center, Russian Academy of Sciences
Abstract
Abstract—Based on year-round measurements of water temperature at an autonomous station (an anchored chain equipped with temperature sensors), the features of the temperature and ice regimes of the Petrozavodsk Bay of Onega Lake in modern climatic conditions were studied; the dates and duration of the main hydrological phenomena in the water area of the bay were specified. In the abnormally warm winter of 2019–2020, the water area of the Petrozavodsk Bay was not completely covered with ice for the first time in a long period of observations; in the area of the measurement station, ice fields were observed from late January to mid-March. The duration of ice-covered period in the next two winters was 3.5 and 5 months. Data were obtained on the timing of the onset and duration of the spring under-ice convection, a phenomenon that plays an important role in the thermal regime of the lake at the end of winter. It is shown that 2016, 2021 and 2022 spring under-ice convective mixing lasted 4–6.5 weeks, covering the entire water column by the end of ice period. Mixing of the water column after breaking the ice (spring homothermy) continued for another 3–4 weeks. In the spring of 2020, under-ice convection was not observed; spring overturn continued for two months from mid-March to mid-May. The dates of the upward transition of water temperature through 4°C in the years of measurements (5–19 May) were ahead of the long-term average by 2–3 weeks (end of May). Thermal stratification was established from 12 to 27 May and existed for 3–3.5 months. Complete mixing of the water mass of the bay took place in late August–early September, and then, until ice settling, the water column cooled in a state of homothermy. Immediately before ice formation, the water temperature dropped to very low values and did not exceed 0.1°С in the water column. The period with an average daily water temperature of the surface layer of the Petrozavodsk Bay above 10°C lasted from 121 to 144 days during the years of measurements.
Publisher
The Russian Academy of Sciences