High temperature transformations and thermal expansion of halotrichite FeAl<sub>2</sub> (SO<sub>4</sub>)<sub>4</sub>⋅22H<sub>2</sub>O

Author:

Sheveleva R. M.12,Zhitova E. S.1,Kupchinenko A. N.1,Krzhizhanovskaya M. G.2,Nuzhdaev A. A.1

Affiliation:

1. Institute of Volcanology and Seismology RAS

2. Saint Petersburg State University

Abstract

Halotrichite is a widespread mineral in post-volcanic environments and oxidation zones of ore deposits. Halotrichite is stable at temperature up to 70 °C; further heating leads to the formation of an X-ray amorphous phase I. There are reflections of millosevichite (prevailing) and mikasaite appearing in the range of temperatures 340–660 °C. Millosevichite and mikasaite are decomposing at temperatures 660 °C with the formation of an X-ray amorphous phase II. According to data of the synchronous thermal analysis, the transition from halotrichite into anhydrous sulfates is accompanied by the loss of H2O molecules, which makes about 42.9 wt %, the transition to the X-ray amorphous phase II is caused by the loss of SO3, which is ca. 37.4 wt %, associated with two endothermal effects. The thermal expansion of halotrichite is sharply anisotropic, the maximum expansion is determined by the shear deformations of the lattice in its monoclinic plane along the bisectrix of the obtuse angle β, and the minimum one – in the direction of strong S–O–Fe bonds inside [Fe(SO4)(H2O)5]0 complexes. The significant volumetric expansion of halotrichite (9(3)∙10-5 ºC-1) occurs due to the determing role of hydrogen bonds in composition of the crystal structure.

Publisher

The Russian Academy of Sciences

Reference32 articles.

1. Abdulina V.R., Siidra O.I. Crystal chemistry and high-temperature X-ray diffraction of hydrated iron sulfate minerals. In: Non-Ambient Diffraction and Nanomaterials (NADM-4): Book of Abstracts IV Conference and School for Young Scientists. Saint Petersburg, 2020. P. 80.

2. Active volcanoes of Kamchatka. Vol. 2 Eds. Fedotova S.A. and Masurenkova Yu.P. Moscow: Nauka, 1991. 415 p.

3. Bibring J.-P., Arvidson R.E., Gendrin A., Gondet B., Langevin Y., Le Mouelic S., Mangold N., Morris R.V., Mustard J.F., Poulet F., Quantin C., and Sotin C. Coupled ferric oxides and sulfates on the Martian surface. Science. 2007. Vol. 317. P. 1206–1210.

4. Bibring J.-P., Langevin Y., Mustard J.F., Poulet F., Arvidson R., Gendrin A., Gondet B., Mangold N., Pinet P., and Forget F. Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data. Science. 2006. Vol. 312. P. 400–404.

5. Bruker-AXS. TopasV4.2: General Profile and Structure Analysis Software for Powder Diffraction Data. Karlsruhe, Germany, 2009.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3