Affiliation:
1. Moscow Institute of Physics and Techology
2. Shirshoov Institute of Oceanology, Russian Academy of Sciences
3. Obukhov Institute of Atmospheric Physics, Russian Acacdemy of Sciences
Abstract
The paper proposes a quasi-geostrophic baroclinic model of Jupiter’s Great Red Spot as a localized eddy formation in a continuously stratified rotating atmosphere under the action of a horizontal shear flow in the f-plane approximation. On the basis of the theory of ellipsoidal vortices, an analytical relationship is obtained between the geometric dimensions of the vortex, the potential vorticity of the vortex core, and the characteristics of the background flow. Measurements of a number of characteristics of both the vortex and the background current in the Voyager 1 (1979), Galileo (1996), and Cassini (2000) missions were used. Based on the theory, the vertical size of the Jupiter’s Great Red Spot was calculated, which turned out to be close to the same characteristic measured in the Voyager 1 (1979) mission. Based on the theory, an e-stimate of the vertical size of the Great Red Spot of Jupiter was obtained, which is consistent with the e-xperimental data of the Voyager 1 mission (1979).
Publisher
The Russian Academy of Sciences
Reference53 articles.
1. Антипов С.В., Незлин М.В., Снежкин Е.Н., Трубников А.С. Автосолитон Россби и лабораторная модель Большого Красного пятна Юпитера // ЖЭТФ. 1985. Т. 89. Вып. 6. С. 1905–1920.
2. Волокитин А.С., Красносельских В.В. Вихрь Россби как модель Большого Красного пятна Юпитера // Докл. АН СССР. 1981. Т. 260. 3. С. 588–591.
3. Джалилиан П., Лю Т. Аналитическое решение для крупномасштабного вращающегося слоя жидкости с тепловой конвекцией XXI Известия РАН. Механика жидкости и газа. 2019. Т. 6. С. 3–11.
4. Жмур В.В. Мезомасштабные вихри океана. М.: ГЕОС, 2011. 384 с.
5. Жмур В.В., Панкратов К.К. Динамика эллипсоидального приповерхностного вихря в неоднородном потоке // Океанология. 1989. Т. 29. № 2. С. 205–211.