Comparison of СO<sub>2</sub> Content in the Atmosphere of St. Petersburg According to Numerical Modelling and Observations

Author:

Nerobelov G. M.12,Timofeyev Yu. M.1,Smyshlyaev S. P.3,Foka S. Ch.1,Imhasin H. H.1

Affiliation:

1. Saint-Petersburg State University

2. SPC RAS – Scientific Research Centre for Ecological Safety, Russian Academy of Sciences

3. Russian State Hydrometeorological University

Abstract

Due to the increase in CO2 content in the Earth’s atmosphere, which is highly dependent on anthropogenic emissions of CO2, quality of emission estimation should be improved. Advanced experiment-based methods of the CO2 anthropogenic emission estimation are built on solution of an inverse problem using highly-accurate measurements of CO2 content and numerical models of transport and chemistry in the atmosphere. The accuracy of such models greatly determines errors of the emission estimations. In a current study temporal variations of column-average CO2 content in an atmospheric layer from surface to the height of ~70–75 km (XCO2) in the Russian megapolis of St. Petersburg during Jan 2019–Mar 2020 simulated by WRF-Chem model and measured by IR Fourier-transform spectrometer Bruker EM27/SUN are compared. The research has demonstrated that the WRF-Chem model simulates well the observed temporal variation of XCO2 in the area of St. Petersburg (correlation coefficient of ~0.95). However, using CarbonTracker v2022-1 data as chemical boundary conditions, the model overestimates XCO2 relative to the observations significantly during almost the whole period of investigation – systematic difference and standard deviation of the difference are 4.2 and 1.9 ppm (1 and 0.5%). A correction of the chemical boundary conditions which is based on analysis of a relation between near-surface wind direction and XCO2 variation notably decreases the systematic difference between the modelled and observed data (almost by a factor of 2). The XCO2 variation by the observations and modelling with uncorrected chemical boundary conditions are in a better agreement during vegetation season. Probably this is related to the compensation of the systematic difference by inaccuracies in estimated biogenic contribution. Hence, the reason of the still existing mean difference between the modelled and observed data can be inaccuracies in setting chemical boundary conditions for upper troposphere and in estimating how biosphere influences CO2 content.

Publisher

The Russian Academy of Sciences

Reference41 articles.

1. Alberti Carlos, Qiansi Tu, Frank Hase, Maria V. Makarova, Konstantin Gribanov, Stefani C. Foka, Vyacheslav Zakharov, Thomas Blumenstock, Michael Buchwitz, Christopher Diekmann, Benjamin Ertl, Matthias M. Frey, Hamud Kh. Imhasin, Dmitry V. Ionov, Farahnaz Khosrawi, Sergey I. Osipov, Maximilian Reuter, Matthias Schneider, Thorsten Warneke. Investigation of spaceborne trace gas products over St Petersburg and Yekaterinburg, Russia, by using COllaborative Column Carbon Observing Network (COCCON) observations // Atmos. Meas. Tech. 2022. V. 15. P. 2199–2229. https://doi.org/10.5194/amt-15-2199-2022

2. Barthlott S., Schneider M., Hase F., Wiegele A., Christner E., González Y., Blumenstock T., Dohe S., García O.E., Sepúlveda E., Strong K., Mendonca J., Weaver D., Palm M., Deutscher N.M., Warneke T., Notholt J., Lejeune B., Mahieu E., Jones N., Griffith D.W.T., Velazco V.A., Smale D., Robinson J., Kivi R., Heikkinen P., Raffalski U. Using XCO2 retrievals for assessing the long-term consistency of NDACC/FTIR data sets // Atmos. Meas. Tech. 2015. V. 8. P. 1555–1573. https://doi.org/10.5194/amt-8-1555-2015

3. Beck V., Koch T., Kretschmer R., Marshall J., Ahmadov R., Gerbig C., Pillai D., Heimann M. The WRF Greenhouse Gas Model (WRF-GHG) // Technical Report No. 25. 2011. Max Planck Institute for Biogeochemistry, Jena, Germany.

4. Bovensmann H., Buchwitz M., Burrows J.P., Reuter M., Krings T., Gerilowski K., Schneising O., Heymann J., Tretner A., Erzinger J. A remote sensing technique for global monitoring of power plant CO2 emissions from space and related applications // Atmos. Meas. Tech. 2010. V. 3. P. 781–811.

5. Buchwitz M., de Beek R., Burrows J.P., Bovensmann H., Warneke T., Nothol J., Meirink J.F., Goede A.P.H., Bergamaschi P., Korner S., Heimann M., Schulz A. Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: initial comparison with chemistry and transport models // Atmos. Chem. Phys. 2005. V. 5. P. 941–962. www.atmos-chem-phys.org/acp/5/941.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3