Affiliation:
1. St. Petersburg University
Abstract
Atmospheric nitric acid (HNO3) has a significant impact on the formation of the ozone layer; therefore, its content is regularly monitored using various local and remote-sensing methods. We used ground-based measurements of solar IR spectra with a Bruker 125HR Fourier spectrometer to derive information on the HNO3 content at the St.Petersburg observational NDACC site in Peterhof. The HNO3 time series obtained showed a pronounced seasonal cycle with a maximum in winter and early spring and a minimum in summer and early autumn. The averaged seasonal variations in nitric acid varied from –30 to +60% for the 0–15 km layer, from –25 to +25% for the 15–50 km layer, and from –25 to +30% for total columns. For 2009–2022 measurement period, no statistically significant trend was found in the time series considered. Comparison of HNO3 stratospheric columns with independent satellite measurements by the MLS and ACE-FTS instruments showed their qualitative and quantitative agreement; the correlation coefficient between ground-based and satellite measurements totals 0.88–0.93. Time series on the vertical structure of the atmospheric nitric acid measured at the St.Petersburg site can be used both to analyze the state of the ozonosphere and to validate satellite measurements and refine the parameters of atmospheric models.
Publisher
The Russian Academy of Sciences
Reference21 articles.
1. Виролайнен Я.А., Тимофеев Ю.М., Поляков А.В., Ионов Д.В., Кирнер О., Поберовский А.В., Имхасин Х. Сопоставление наземных измерений общего содержания О3, HNO3, HCl и NO2 c данными численного моделирования // Изв. РАН ФАО. 2016. Т. 52. № 1. С. 64–73.
2. Виролайнен Я.А., Поляков А.В., Тимофеев Ю.М. Анализ изменчивости стратосферных газов по данным наземных спектроскопических наблюдений в районе Санкт-Петербурга // Изв. РАН. ФАО. 2021. Т. 57. № 2. С. 163–174.
3. Виролайнен Я.А. Тимофеев Ю.М., Поберовский А.В., Поляков А.В. Анализ информативности наземного ИК спектроскопического метода определения вертикальной структуры содержания HNO3 в атмосфере // ОАО. 2022. Т. 35. № 11. С. 906–911.
4. Dammers E., Shephard M.W., Palm M., Cady-Pereira K., Capps S., Lutsch E., Strong K., Hannigan J.W., Ortega I., Toon G.C., Stremme W., Grutter M., Jones N., Smale D., Siemons J., Hrpcek K., Tremblay D., Schaap M., Notholt J., and Erisman J.W. Validation of the CrIS fast physical NH3 retrieval with ground-based FTIR // Atmos. Meas. Tech. 2017. V. 10. № 7. P. 2645–2667.
5. Hase H., Hannigan J.W., Coffey M.T., Goldman A., Hoepfner M., Jones N.B., Rinsland C.P., Wood S.W. Intercomparison of retrieval codes used for the analysis of high-resolution, ground-based FTIR measurements // J. Quant. Spectrosc. Radiat. Transfer 2004. V. 87. № 1. P. 25–52.