Comparison of Cluster Analysis Methods for Identification of Weather Regimes in Euro-Atlantic Region for Winter and Summer Seasons

Author:

Babanov B. A.1,Semenov V. A.12,Mokhov I. I.13

Affiliation:

1. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences

2. Institute of Geography, Russian Academy of Sciences

3. Lomonosov Moscow State University

Abstract

Various methods of cluster analysis are used for identification of large-scale atmospheric circulation regimes or weather regimes (WRs). In this paper we compare four most commonly used clustering methods – k-means (KM), Ward’s hierarchical clustering (HW), Gaussian mixture model (GM) and self-organizing maps (SOM) to analyze WRs in Euro-Atlantic region. The data used for WRs identification are 500 hPa geopotential height fields (z500) from the ERA5 reanalysis for the 1940–2022 period. Four classical wintertime weather regimes are identified by the KM method – two regimes associated with positive and negative phases of the North Atlantic Oscillation (NAO+ and NAO–), a regime associated with the Scandinavian blocking (SB) and a regime characterized by elevated pressure over the Northern Atlantics. For summer months KM method gets WRs that are similar by their spatial structure to the classical winter ones. The SOM method yields results that are almost identical to the results of KM method. Unlike KM and SOM methods, HW and GM do not catch the spatial structure of all four classical winter Euro-Atlantic weather regimes and their summer analogues. Compared to WRs of the KM and SOM methods, WRs obtained by HW and GM methods explain less z500 variance, they have different occurrences, persistence and transition features. Summer and winter WRs obtained by HW and GM methods are less similar to each other compared to WRs provided by KM method. Average spatial correlation coefficients between mean z500 fields of WRs obtained by KM and HW methods are 0.76 in winter and 0.83 in summer, 0.70 in winter and 0.72 in summer for KM and GM methods and 0.41 in winter and 0.44 in summer for the regimes between HW and GM methods, respectively. There are statistically significant trends of seasonal occurrence of WRs found by some of the studied clustering methods – a positive trend for the occurrence of the NAO+ regime and a negative trend for the occurrence of the NAO– regime.

Publisher

The Russian Academy of Sciences

Reference60 articles.

1. Бабанов Б.А., Семенов В.А., Акперов М.Г., Мохов И.И., Keenlyside N.S. Повторяемость зимних режимов атмосферной циркуляции в Евро-Атлантическом регионе и связанные с ними экстремальные погодно-климатические аномалии в Северном полушарии // Оптика атмосферы и океана. 2023. Т. 36. № 4. С. 304–312.

2. Бардин М.Ю., Платова Т.В. Долгопериодные вариации показателей экстремальности температурного режима на территории России и их связь с изменениями крупномасштабной атмосферной циркуляции и глобальным потеплением // Метеорол. и гидрол. 2019. № 12. С. 5–19.

3. Гирс А.А. Макроциркуляционный метод долгосрочных метеорологических прогнозов. Л.: Гидрометеоиздат, 1974. 485 с.

4. Дзердзеевский Б.Л., Курганская В.М., Витвицкая З.М. Типизация циркуляционных механизмов в Северном полушарии и характеристика синоптических сезонов // Труды НИУ ГУГМС. Л.: Гидрометиздат. 1946. 80 с.

5. Arthur D., Vassilvitskii S. K-means++ the advantages of careful seeding // Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. 2007. P. 1027–1035.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3