Affiliation:
1. V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Science
Abstract
The paper presents geochemical and isotopic characteristics of Neoarchean (2.7–2.66 Ga) mafic granulites of the Sharyzhalgay uplift in the southwestern Siberian craton. Mafic and predominant felsic granulites compose fragments of the metamorphic complex among the Neoarchean and Paleoproterozoic granitoids. Mafic granulites are characterized by the mineral association Cpx + Pl ± Hbl ± Opx ± Qz and include two types with different major and immobile trace element contents. The dominant rocks of the first type have a wide range of Mg# and concetrations of TiO2 and immobile trace elements (REE, Zr, Nb, and most positive εNd(Т) va-lues. The first type of mafic granulites show elevated (La/Sm)n and enrichment in Th and LREE relative Nb which is typical of basalts of subduction origin or crustal contaminated basalts. The absence of negative correlation between (La/Sm)n and εNd(Т) and a clear positive correlation of TiO2 with Nb testify against the effect of crustal contamination on the composition of the mafic granulites. The magmatic protoliths of first type of mafic granulites are suggested to form by the melting of depleted peridotites of the subcontinental mantle which metasomatized by melts formed from basalts or terrigenous sediments of the subducting plate. Mafic granulites of the second type have a narrower range of Mg#, TiO2 content, positive εNd(Т), flat rare earth patterns and no subduction signatures, which indicates an asthenospheric depleted mantle source. Ma-fic granulites contaminated by the Paleoarchean crust are characterized by increased (La/Sm)n, depletion of Nb relative to Th and LREE, and negative εNd(Т) values. Post magmatic influence of granitoids lead to the enrichment of mafic granulites in biotite and apatite, an increased in concentrations of K2O, P2O5, a signi-ficant enrichment of Zr, Nb, Th, LREE, and negative εNd(Т) values. The difference between mafic granulites of the first and second types is not resulted from crustal contamination, but is due to the melting of two types of sources: asthenospheric and subcontinental lithospheric mantle. The subcontinental lithospheric mantle of the Irkut block was isotopically depleted for the Neoarchean time (∼2.7 Ga), and its enrichment in incompatible trace elements, presumably by felsic melts generated from the rocks of subducting plate, immediately preceded mafic magmatism.
Publisher
The Russian Academy of Sciences
Reference43 articles.
1. Гладкочуб Д.П., Донская Т.В., Мазукабзов А.М. и др. Китойский комплекс гранитоидов (юг Сибирского кратона): структурно-геологическая позиция, состав, возраст и геодинамическая интерпретация // Геология и геофизика. 2005. Т. 46. № 11. С. 1139–1150.
2. Гладкочуб Д.П., Писаревский С.А., Мазукабзов А.М. и др. Первые свидетельства палеопротерозойского позднеколлизионного базитового магматизма в Присаянском выступе фундамента Сибирского кратона // Докл. АН. 2013. Т. 450. № 4. С. 440–444.
3. Грабкин О.В., Мельников А.И. Структура фундамента Сибирской платформы в зоне краевого шва (на примере Шарыжалгайского блока). Новосибирск: Наука, 1980. 90 с.
4. Мехоношин А.С., Эрнст Р.Э., Седерлунд У. и др. Связь платиноносных ультрамафит-мафитовых интрузивов с крупными изверженными провинциями (на примере Сибирского кратона) // Геология и геофизика. 2016. Т. 57. № 5. С. 1043–1057.
5. Николаева И.В., Палесский С.В., Козьменко О.А., Аношин Г.Н. Определение редкоземельных и высокозарядных элементов в стандартных геологических образцах методом масс-спектрометрии с индукционно-связанной плазмой // Геохимия. 2008. № 10. С. 1085–1091.