Optimization of structural dynamics of the economy in the framework of the “input-output” methodology

Author:

Toroptsev Evgeny1ORCID

Affiliation:

1. North Caucasus Federal University

Abstract

The dynamic input-output balance model in the form of a system of differential equations, being digitized by the already published author's methodology, allows solving a wide range of problems of static structural stability of economic systems. Structural dynamics can be optimized by including any variable parameters in the vector and the limit of all model elements. In this paper, inter-sectoral inertias are chosen, and a method is proposed that uses a vector of parameters of an arbitrary (allowed by the model itself) length at the step of the search process. This distinguishes the proposed method from existing ones, making it unique. The uniqueness specified here lies in the removal of the so-called “curse of dimensionality” inherent in the classical optimization problems (numerical search problems) using methods from the coordinate-wise descent to the rich Newtonian-type tools. In this sense, the method is a competitor to machine learning-based optimization of artificial neural networks. At the same time, it does not matter how exactly the task is formalized: it should highlight the target indicators and the vector of variable parameters. It is possible to define and solve many optimization problems by changing the content of the vector of variable parameters according to the corresponding plan of the computational experiment. The paper presents only one example and one optimization stage. The limiting and functional conditions for the operation of the method preserve a linear relationship between the desired increments of the fundamental parts of the eigenvalues of the model state matrix and their sensitivities to control parameters. Such “small” optimization steps are separate and independent problems, the numerical solution of which can be repeated.

Publisher

The Russian Academy of Sciences

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3