Long-Chain Alkylphenols Biodegradation Potential of the Soil <i>Ascomycota</i>

Author:

Kuzikova I. L.1,Medvedeva N.G.1

Affiliation:

1. St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences

Abstract

A total of 11 strains ascomycetes-destructors of technical nonylphenol (NP) and 4-tert-octylphenol (4-t-OP) were isolated from nonylphenol-contaminated soddy-podzolic loamy soil (Leningrad Region, Russia). Fungal isolates are able to degrade NP and 4-t-OP at a high load (300 mg/L). The most effective Fusarium solani 8F strain has the ability to degrade alkylphenols (AP) both under cometabolic conditions and without additional carbon and energy sources. The decrease in AP is due to the processes of biodegradation and/or biotransformation by the studied strain and, to a small extent, due to sorption by fungal cells. The NP and 4-t-OP half-life under cometabolic conditions is 3.5 and 6.4 hours, respectively, and without additional carbon and energy sources, 9 and 19.7 hours, respectively. The amount of the lipid peroxidation product, malondialdehyde, as well as the reduced glutathione content in the process of NP and 4-t-OP biodegradation under cometabolic conditions increases by 1.7 and 2 times, respectively, compared with the control. The high level of reduced glutathione in F. solani 8F cells may indicate the participation of this metabolite both in the processes of AP biodegradation and in providing strain resistance to oxidative stress. To our knowledge, this is the first report on the degradation of NP and 4-t-OP by ascomycetous fungus F. solani both under cometabolic conditions and without additional carbon and energy sources. The revealed high potential of soil ascomycetes to degrade alkylphenols can be the basis for new environmentally safe bioremediation technologies for the purification of endocrine-disruptors conta-minated soils, natural and waste waters.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3