Structure and Seasonal Variability of Groundwater Microbial Communities in the City of Moscow

Author:

Gruzdev E. V.1,Begmatov Sh. A.1,Beletsky A. V.1,Mardanov A. V.1,Ravin N. V.1,Kadnikov V. V.1

Affiliation:

1. Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences

Abstract

Abstract—Groundwater, which appears on the surface in the form of springs, is an important ecologically significant component of the aquatic ecosystem, sensitive to changes in environmental conditions. The anthropogenic impact associated with urbanization leads to a change in the characteristics of groundwater, which in turn affects the composition of microbial communities in spring waters. Using high-throughput sequencing of the 16S ribosomal RNA gene fragments, we characterized the composition of microbial communities in five natural springs in the city of Moscow in the spring, summer, and winter seasons. The microbial communities of each spring in different seasons were similar to each other and clearly differed from the microbiomes of other springs. Among the Archaea, which averaged about 20% of microbial communities, ammonium-oxidizing Crenarchaeota predominated, as well as Nanoarchaeota. Most of the Bacteria belonged to the phyla Proteobacteria, Patescibacteria, Verrucomicrobiota, Chloroflexi, and Bacteroidota. Autotrophic bacteria, including iron-oxidizing bacteria of the family Gallionellaceae and nitrifiers, as well as methanotrophs, accounted for significant proportions in microbial communities in the springs with a presumably deeper water source. Chemical and molecular analyzes did not reveal contamination of spring waters with toxic substances and oil-derived products, as well as the presence of pathogenic microorganisms and indicators of fecal pollution. However, during the spring season, the proportions of halophilic and hydrocarbon-oxidizing bacteria increased in water microbiomes, which may reflect entry into groundwater after snow thawing of deicin reagents and hydrocarbons, which are successfully biodegraded in the soil.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3