Affiliation:
1. Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, 199034, St. Petersburg, Russia
Abstract
Eigenfrequencies and trapped modes are studied in an isotropic and homogeneous elastic half-strip. For different configurations of rigidly clamped and the traction-free zones, information was obtained about the absence or presence of eigenfrequencies below, and in some cases even above, the cutoff point of the continuous spectrum. Estimates of the multiplicity of the discrete spectrum are derived and various asymptotic representations of trapped modes and their frequencies are constructed.
Publisher
The Russian Academy of Sciences
Reference34 articles.
1. Ладыженская О.А. Краевые задачи математической физики. М.: Наука, 1973. 408 с.
2. Фикера Г. Теоремы существования в теории упругости. М.: Мир, 1974.
3. Камоцкий И.В., Назаров С.А. О собственных функциях, локализованных около кромки тонкой области // Проблемы матем. анализа. Вып. 19. Новосибирск: Научн. книга, 1999. С. 105–148.
4. Cardone G., Durante T., Nazarov S.A. The localization effect for eigenfunctions of the mixed boundary value problem in a thin cylinder with distorted ends // SIAM J. Math. Anal. 2010. V. 42. 6. P. 25812013-2609.
5. Черепанов Г.П. Механика хрупкого разрушения. М.: Наука, 1974.