Diffraction of a Whispering Gallery Mode at a Jumply Straightening of the Boundary

Author:

Zlobina E. A.1,Kiselev A. P.123

Affiliation:

1. St. Petersburg State University, 199034, St. Petersburg, Russia

2. St. Petersburg Department of V.A. Steklov Institute of Mathematics of the Russian Academy of Sciences, 191023, St. Petersburg, Russia

3. Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, 199178, St. Petersburg, Russia

Abstract

Diffraction of a high-frequency small-number whispering gallery mode running along a concave boundary, which turns into a flat one so that its curvature experiences a jump, is studied. The cases of rigid (Neumann) and soft (Dirichlet) boundary conditions are considered. Within the framework of the parabolic equation method, a mathematically correct scattering problem is obtained which is solved explicitly and investigated asymptotically in detail. Analytic expressions are found for all emerging wavefields. In particular, an edge wave diverging from the point of non-smoothness of the boundary is described. For the rigid condition, its amplitude is proportional to the magnitude of curvature jump, but not for the soft condition.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3