A COMPOSITE MODEL OF MICROWAVE SCATTERING FROM WATER SURFACE IN EXTREME WIND SPEED CONDITION

Author:

Rusakov N. S.1,Baydakov G. A.1,Troitskaya Yu. I.1

Affiliation:

1. Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Abstract

Experiments were carried out in the wind-wave flume of Large Thermo-Stratified Wind-Wave Tank of IAP RAS aimed at studying the mechanisms of cross-polarized microwave radiation scattering from water surface under conditions of extremely high wind speeds. It is shown that the normalized radar cross-section (NRCS) can be represented as the result of an incoherent addition of contributions from breaking wave crests and from non-breaking wind waves. The effect of smoothing the water surface after passing the breaking crest made it possible to measure the NRCS of the breaking area on cross-polarization, while no dependence of the NRCS on wind speed and incidence angle was revealed. NRCS on non-breaking wind waves was calculated within the framework of the small slope approximation (SSA) using experimentally measured wind wave spectra. It is shown that the NRCS on cross-polarization increases monotonically with increasing wind speed, including hurricane conditions. In this case, the contribution of non-breaking wind waves to the NRCS saturates at wind speeds above 25 m/s. The monotonous increasing NRCS at higher wind speeds is associated with a breaking area increasing. A composite model of microwave radiation scattering from wave-covered water surface has been constructed, which has been verified on the basis of comparison with measurement data. The possibility of constructing a geophysical model function for ocean conditions based on the proposed composite model is shown, which can be used for remote sensing of sea storms and hurricanes.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3