Affiliation:
1. Shirshov Institute of Oceanology, Russian Academy of Sciences
2. Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences
Abstract
As one of the main intermediate products of hydrogen sulfide oxidation, elemental sulfur plays an important indicator role in understanding the oxidative cycle of sulfur in the water of anoxic basins. The distribution of elemental sulfur in the Black Sea water column at stations located in the area of the continental slope is considered. For the first time, the concentration distributions of two forms of elemental sulfur depending on the depth in the Black Sea water were obtained: suspended elemental sulfur with a fraction of more than 0.45 μm (S0) and zero valency sulfur (ZVS), which includes the sum of elemental sulfur (suspended and colloidal) and polysulfide sulfur. In the upper anoxic waters, the concentration of S0 noticeably increases (almost 200 times relative to the 400 m depth) with an increase in the concentration of hydrogen sulfide and the density of water. At depths of more than 250 m, the concentration of both forms of sulfur remains almost constant (ZVS = 0.21 ± ± 0.03 µmol/kg, S0 = 0.05 ± 0.01 µmol/kg). A sharp increase in the concentration of S0 at the depths of 150–250 m is associated with the oxidation of hydrogen sulfide due to bacterial anoxygenic photosynthesis after sampling. The value of δ34S(ZVS) was determined in the waters of two stations Ash-26 and 149 at the depths of 450 and 600 m respectively, which turned out to be +2.2‰ higher than δ34S(Н2S) from the same depths, which indicates the bacterial origin of elemental sulfur.
Publisher
The Russian Academy of Sciences
Reference14 articles.
1. Дубинин А.В., Демидова Т.П., Кременецкий В.В., Кокрятская Н.М., Римская-Корсакова М.Н., Якушев Е.В. Определение восстановленных форм серы в анаэробной зоне Черного моря: сравнение методов спектрофотометрии и иодометрии // Океанология. 2012. Т. 52. № 2. С. 200‒209.
2. Дубинин А.В., Демидова Т.П., Римская-Корсакова М.Н., Семилова Л.С., Очередник О.А. Определение восстановленных форм серы в воде анаэробных бассейнов // Морской гидрофизический журнал. 2019. Т. 35. № 1. С. 37‒51. https://doi.org/10.22449/0233-7584-2019-1-37-51
3. Canfield D.E. Biogeochemistry of sulfur isotopes / In: Stable isotope geochemistry. Reviews in mineralogy and geochemistry. 2001. V. 43. P. 607‒636.
4. Chambers L.A., Trudinger P.A. Microbiological fractionation of stable sulfur isotopes: A review and critique // Geomicrobiology Journal. 1979. 1. № 3. P. 249–293. https://doi.org/10.1080/01490457909377735
5. Fry B., Ruf W., Gest H., Hayes J.M. Sulfur isotope effects associated with oxidation of sulfide by O2 in aqueous solution // Chem. Geol. 1988. V. 73. P. 205–210.