A REDOX-REGULATED, HETERODIMERIC NADH:CINNAMATE REDUCTASE IN Vibrio ruber
Author:
Bertsova Y. V1, Serebryakova M. V1, Anashkin V. A1, Baykov A. A1, Bogachev A. V1
Affiliation:
1. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
Abstract
Genes of putative reductases of α,β-unsaturated carboxylic acids are abundant among anaerobic and facultatively anaerobic microorganisms, yet substrate specificity has been experimentally verified for few encoded proteins. Here, we co-produced in Escherichia coli a heterodimeric protein of the facultatively anaerobic marine bacterium Vibrio ruber (GenBank SJN56019 and SJN56021; annotated as NADPH azoreductase and urocanate reductase, respectively) with Vibrio cholerae flavin transferase. The isolated protein (named Crd) consists of the sjn56021-encoded subunit CrdB (NADH:flavin, FAD binding 2, and FMN bind domains) and an additional subunit CrdA (SJN56019, a single NADH:flavin domain) that interact via their NADH:flavin domains (Alphafold2 prediction). Each domain contains a flavin group (three FMNs and one FAD in total), one of the FMN groups being linked covalently by the flavin transferase. Crd readily reduces cinnamate, p-coumarate, caffeate, and ferulate under anaerobic conditions with NADH or methyl viologen as the electron donor, is moderately active against acrylate and practically inactive against urocanate and fumarate. Cinnamates induced Crd synthesis in V. ruber cells grown aerobically or anaerobically. The Crd-catalyzed reduction started by NADH demonstrated a time lag of several minutes, suggesting a redox regulation of the enzyme activity. The oxidized enzyme is inactive, which apparently prevents production of reactive oxygen species under aerobic conditions. Our findings identify Crd as a regulated NADH-dependent cinnamate reductase, apparently protecting V. ruber from (hydroxy)cinnamate poisoning.
Publisher
The Russian Academy of Sciences
Reference42 articles.
1. Tischer, W., Bader, J., and Simon, H. (1979) Purification and some properties of a hitherto-unknown enzyme reducing the carbon-carbon double bond of α,β-unsaturated carboxylate anions, Eur. J. Biochem., 97, 103-112, https://doi.org/10.1111/j.1432-1033. 2. Besteiro, S., Biran, M., Biteau, N., Coustou, V., Baltz, T., Canioni, P., and Bringaud, F. (2002) Succinate secreted by Trypanosoma brucei is produced by a novel and unique glycosomal enzyme, NADH-dependent fumarate reductase, J. Biol. Chem., 277, 38001-38012, https://doi.org/10.1074/jbc.M201759200. 3. Bertsova, Y. V., Oleynikov, I. P., and Bogachev, A. V. (2020) A new water-soluble bacterial NADH: fumarate oxidoreductase, FEMS Microbiol. Lett., 367, fnaa175, https://doi.org/10.1093/femsle/fnaa175. 4. Bertsova, Y. V., Serebryakova, M. V., Baykov, A. A., and Bogachev, A. V. (2022) A novel, NADH-dependent acrylate reductase in Vibrio harveyi, Appl. Environ. Microbiol., 88, e0051922, https://doi.org/10.1128/aem.00519-22. 5. Bertsova, Y. V., Kostyrko, V. A., Baykov, A. A., and Bogachev, A. V. (2014) Localization-controlled specificity of FAD:threonine flavin transferases in Klebsiella pneumoniae and its implications for the mechanism of Na+-translocating NADH:quinone oxidoreductase, Biochim. Biophys. Acta, 1837, 1122-1129, https://doi.org/10.1016/j.bbabio.2013.12.006.
|
|