Affiliation:
1. Pirogov Russian National Research Medical University,
2. RUDN University
3. Institution National Medical Research Radiology Center of the Ministry of Healthcare
of the Russian Federation
4. Dmitry Rogachev National Medical Research Center of Pediatric Hematology,
Oncology and Immunology, Ministry of Health of the Russian Federation
Abstract
Solving the question of the origin of life on Earth is impossible without understanding how the chemical, functional, and regulatory principles that determine cellular metabolism arose, how cells acquired the properties that determine their evolution, and how biological systems function and develop. This review is devoted to the consideration of the versatility of the functions of glycolytic enzymes, the expression of which is significantly increased in some types of cells, for example, cells with stem properties or malignant tumor cells. Almost all glycolysis enzymes have been found to have non-catalytic functions that are necessary to maintain a high rate of cell proliferation, their a-ctive migration, and the formation of a stem-like phenotype. Glycolytic enzymes arose very early during the evolution. Since the genomes of ancient life forms had a limited number of genes to encode the entire set of necessary functions, glycolytic enzymes or the products of the reactions they catalyzed could be used as ancient regulators of intercellular and intracellular communication. Subsequently, the multifunctionality of the main metabolic enzymes began to be used by tumor cells to ensure their survival and growth. In this review, we discuss some of the noncatalytic functions of glycolytic enzymes, as well as the possible evolutionary significance of acquiring such multifunctionality.
Publisher
The Russian Academy of Sciences