Fibrin Coating Contributes to the Retention of the Endothelial Layer in Pulsating Flow

Author:

Matveeva V. G.1,Velikanova E. A.1,Antonova L. V.1,Barbarash L. S.1

Affiliation:

1. Research Institute of Complex Issues of Cardiovascular Diseases

Abstract

The presence of a modifying coating based on extracellular matrix proteins on the inner surface of vascular prostheses is known to enhance endothelial cell adhesion and prevent detachment under pulsating flow conditions. This coating effectively reduces the risk of thrombosis and plays a critical role in determining implantation outcomes. Although proteins like collagen, fibrin, and fibrinogen are commonly used as coatings to improve cell adhesion, their relative effectiveness remains uncertain. Objective: This study aims to identify the optimal coating, based on extracellular matrix proteins, that preserves prosthesis functionality and maintains endothelial layer integrity under pulsating flow conditions. Methods: Scaffolds and vascular prostheses were fabricated using poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(ε-caprolactonone) through an electrospinning process. These structures were then modified with collagen I, fibronectin, or fibrin. Endothelial colony-forming cells (ECFCs) were seeded onto the protein-modified electrospun samples and cultured under both static and dynamic conditions. After a 3-day incubation period under static conditions, cell viability, metabolic and proliferative activity, as well as adhesive properties, were evaluated. Adhesive properties were assessed by analyzing the area occupied by the focal adhesion protein paxillin. Cell retention was determined by comparing cell density on the inner surface of 4 mm diameter vascular prostheses after a 7-day incubation period, both under pulsating flow conditions and static conditions. Results: Cell metabolic activity, viability, number, proliferation, and the area occupied by the focal adhesion protein paxillin were found to be significantly higher in samples coated with fibrin compared to those coated with collagen I and fibrinogen. The cell density (cells/cm2) of ECFCs on the inner surface of fibrin-coated prostheses showed no significant difference between dynamic and static conditions. In contrast, collagen and fibronectin coatings resulted in approximately half the cell density under pulsating flow conditions compared to static conditions. Conclusion: The fibrin coating demonstrated superior biological activity, adhesive properties, and preservation of the endothelial layer under both static and pulsating flow conditions, as compared to collagen I and fibronectin coatings. Consequently, the utilization of fibrin coating emerges as a promising option for modifying the inner surface of vascular prostheses.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3