The Na<sup>+</sup>/K<sup>+</sup>-ATPase Inhibitor Ouabain Has Different Effects on the Electrophysiological Properties of Excitatory and Inhibitory Neurons in the Entorhinal Cortex E

Author:

Proskurina E. Yu.12,Sinyak D. S.2,Zaitsev A. V.2

Affiliation:

1. Almazov National Medical Research Centre

2. Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS

Abstract

Na+/K+-ATPase maintains the neuron’s resting potential and the transmembrane gradient of K+ and Na+ cations, thus regulating ion transport and cellular volume. Mutations in Na+/K+-ATPase genes that impair its function can cause significant impairments in the nervous system function, including the development of epilepsy, if not lethal. Different forms of Na+/K+-ATPase are expressed in various classes of neurons and exhibit different characteristics. Thus, the impaired function of Na+/K+-ATPase may differentially affect the functioning of inhibitory and excitatory neurons. This study aims to determine the effects of the Na+/K+-ATPase antagonist ouabain on the electrophysiological characteristics of pyramidal cells and fast-spiking interneurons, as well as its impact on synaptic transmission. The results indicate that exposure to 5 µM ouabain results in depolarization of the resting membrane potential by 5 mV, as well as decreased amplitude and increased duration of the action potential of pyramidal neurons. Furthermore, ouabain caused a decrease in the amplitude of afterhyperpolarization in fast-spiking i-nterneurons. Moreover, both types of neurons exhibited a decrease in the threshold of action potential generation and the current at which depolarization block occurs. The addition of ouabain did not alter other electrophysiological characteristics of neurons. Furthermore, ouabain rapidly attenuates GABAergic transmission without affecting e-xcitatory synaptic transmission. These new findings on the effects of ouabain on excitatory pyramidal neurons and inhibitory interneurons contribute to the understanding of the mechanism underlying changes in the balance of excitation and inhibition in neural networks under Na+/K+-ATPase function impairment.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3