Distribution of Oxygen Tension on Microvessels and in Tissue of Rat Brain Cortex at Severe Arterial Hypocapnia

Author:

Vovenko E. P.1,Sokolova I. B.1

Affiliation:

1. Pavlov Institute of Physiology of the Russian Academy of Sciences

Abstract

Arterial hypocapnia (AH), induced by voluntary or forced hyperventilation of the lungs, is accompanied by a decrease in cerebral blood flow (due to an increase in the arteriole tone) and an increase in the affinity of hemoglobin for oxygen. As a result, an insufficient oxygen supply to cortical tissue take place and zones with a critically low oxygen tension (pO2) are formed in brain tissue. The distribution of pO2 to cerebral cortex during AH has not been studied enough. The aim of the work was to evaluate the effectiveness of oxygen supply to brain tissue at the level of arterial and venous microvessels at AH. To do this, the following tasks were set: 1) to study the distribution of the pO2 on the arterial and venous microvessels of the rat cerebral cortex; 2) to analyze tissue pO2 profiles near the walls of these microvessels. On anesthetized Wistar rats under conditions of forced hyperventilation (PaCO2 = 17.1 ± 0.7 mm Hg), the distribution of oxygen tension on the wall of pial and radial arterioles with a lumen diameter of 7–70 μm and on the wall of pial and ascending venules with a lumen diameter of 7–300 µm was studied. In tissue, near the wall of cortical arterioles and venules with a lumen diameter of 10–20 μm, tissue pO2 profiles were measured. Measurements of pO2 during spontaneous breathing of the animal with air served as a control. All pO2 measurements were made using platinum polarographic microelectrodes with a tip diameter of 3–5 μm. Visualization of the electrode tip and microvessels was carried out using a LUMAM-K1 microscope with epiobjectives of the contact type. This work presents for the first-time direct measurements of pO2 on the walls of arterioles and venules of the rat cerebral cortex and in tissues at different distances from the walls of these microvessels at AH. It has been shown that AH results in significant decrease in the oxygen supply to cerebral cortex, that is manifested by a significant drop of the pO2’s on venous microvessels and in tissue in the immediate vicinity of the studied microvessels. It has been shown, that the role of arterioles as a direct source of oxygen to brain tissue, is significantly reduced during arterial hypocapnia. Forced hyperventilation results in significant deterioration of oxygen supply to cerebral cortex, despite elevated pO2 values in the systemic arterial blood and in blood of systemic cerebral veins (sagittal sinus).

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3