Affiliation:
1. Bechtereva Institute of the Human Brain of Russian Academy of Sciences
Abstract
This study presents a comparison of the effect on EEG electrical activity in the range of infraslow frequencies of two methods: infra-low frequency EEG biofeedback and heart rate variability training. The study involved 17 healthy subjects aged 21 to 50 years with minor symptoms of a physiological or psychological nature, who did not have a history of neurological or psychiatric diseases. To evaluate the results of the training, we analyzed the spectral power of slow EEG oscillations during the performance of the attention test (Visual Go/NoGo), recorded before and after twenty sessions of biofeedback. Both the subjective assessment of the physiological and psychological state and the results of the visual test showed more pronounced positive changes under the influence of EEG biofeedback compared to the cases of heart rate variability training. A significant increase in the amplitudes of oscillations in the infraslow EEG range was observed only after EEG biofeedback.
Publisher
The Russian Academy of Sciences
Reference42 articles.
1. Kropotov JD (2022) The enigma of infra-slow fluctuations in the human EEG. Front Hum Neurosci 16: 928410. https://doi.org/10.3389/fnhum.2022.928410
2. Аладжалова HA (1956) Сверхмедленные ритмические изменения электрического потенциала головного мозга. Биофизика 1956 (2): 127–136. [Aladjalova NA (1956) Infra-slow rhythmic changes of the brain electrical potential. Biophysica 1: 127–136. (In Russ)].
3. Аладжалова HA (1962) Медленные электрические процессы в головном мозге. М. Изд-во АН СССР. [Aladjalova NA (1962) Slow electrical processes in the brain. M. Publ House Acad SciUSSR. (In Russ)].
4. Аладжалова HA (1979) Психофизиологические аспекты сверхмедленной ритмической активности головного мозга. М. Наука. [Aladjalova NA (1979) Psychophysiological Aspects of Brain Infra-Slow Rhythmical Activity. M. Nauka. (In Russ)].
5. De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM (2006) fMRI resting-state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29: 1359–1367. https://doi.org/10.1016/j.neuroimage.2005.08.035