The Effect of the Microbiota Metabolite – Butyric Acid on Motor Coordination, Muscle Strength and the Level of Oxidative Stress in Skeletal Muscles in Mice with Dysbiosis

Author:

Yakovleva O. V.1,Mullakaeva A. I.1,Salikhzyanova A. F.1,Sorokina D. M.1,Sitdikova G. F.1

Affiliation:

1. Kazan Federal University

Abstract

According to modern concepts, the composition and diversity of the intestinal microbiota play an essential role in maintaining immunity, homeostasis, and, in general, the physiological functions of the host organism. Recently the positive role of the microbiota and its metabolites especially short-chain fatty acids, in the metabolism and functional activity of skeletal muscles was reported. The aim of our work was to analyze muscle strength and motor coordination in mice after injection of broad–spectrum antibiotics with simultaneous administration of a microbiota metabolite – one of the representatives of short-chain fatty acids – butyric acid. In addition, we determined the level of malondialdehyde, the concentration of total glutathione and the activity of glutathione peroxidases in the muscles of the hind limbs in mice with administration of antibiotics and butyric acid. The administration of antibiotics to adolescent mice for two weeks induced higher mortality and decrease of weight, and also caused significant changes in motor behavior, including an increase in horizontal motor activity, decrease in vertical motor activity, muscle strength, and motor coordination. A higher level of oxidative stress was found in the muscle tissues of the hind limbs of mice treated with antibiotics. At the same time, oral administration of butyric acid prevented the observed changes and improved not only behavioral disorders, but also partially reduced the level of oxidative stress. In conclusion, metabolite of normal microbiota has a positive effect on the functional and biochemical parameters of skeletal muscles in dysbiosis, which can be used to prevent loss of muscle function in various pathological conditions.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3