Physical Feasibility and Synthesis of Heat Exchange Systems According to Thermodynamic Parameters

Author:

Tsirlin A. M.1

Affiliation:

1. Ailamazyan Institute of Program Systems, Russian Academy of Sciences

Abstract

The region of physical feasibility of heat exchange systems in the space of their thermodynamic indicators (heat load, dissipation, and thermal conductivity) is constructed in this work. Criteria of thermodynamic perfection for typical two-flow cells are calculated. A condition of thermodynamic equivalence of heat exchange systems is given, and an algorithm for constructing a multiflow system equivalent to a two-flow heat exchanger is proposed. The cases of variable heat capacity, change of the phase state, and different flow hydrodynamics are considered. The constraints on the temperatures of all or some of the flows at the inlet and outlet of the heat exchange system are taken into account. The synthesis involves the choice of the structure of contacts, the values of free parameters of flows, and the distribution of contact areas and heat loads between two-flow heat exchange cells.

Publisher

The Russian Academy of Sciences

Reference25 articles.

1. Островский Г.М., Зиятдинов Н.Н., Емельянов И.И. Синтез оптимальных систем простых ректификационных колонн с рекуперацией тепла // Докл. РАН. 2015. Т. 461. № 2. С. 189–192. Ostrovskii G.M., Ziyatdinov N.N., Emel’yanov I.I. Synthesis of Optimal Systems of Simple Distillation Columns with Heat Recovery // Doklady Chemistry. 2015. V. 461. Part 1. P. 89–92.

2. Зиятдинов Н.Н., Островский Г.М., Емельянов И.И. Построение системы теплообмена при реконструкции и синтезе оптимальных систем ректификационных колонн // Теоретические основы химической технологии. 2016. Т. 50. № 2. С. 184–193. Ziyatdinov N.N., Ostrovskii G.M., Emel’yanov I.I. Designing a Heat Exchange System upon the Reconstruction and Synthesis of Optimal Systems of Distillation Columns // Theoretical Foundations of Chemical Engineering. 2016. V. 50. № 2. P. 178–187.

3. Kafarov V.V., Meshalkin V.P., Perov V.L. Mathematical foundations of computeraided design of chemical plants. Ximiya. 1979.

4. Brodjanskiy V.M., Fratsher V., Mikhalek K. Exergy methods and its applications. Moscow: Energoatomizdat, 1988.

5. Berry R.S., Kasakov V.A., Sieniutycz S., Szwast Z., Tsirlin A.M. Themodynamic. Optimization of Finite Time Processes. Wiley Chichester. 1999.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3