Аccounting for autocorrelation in a linear regression problem on an example of analysis of atmospheric column NO2 content

Author:

Gruzdev A. N.

Abstract

A method is proposed for taking into account a serial correlation (an autocorrelation) of data in a linear regression problem, which allows accounting for the autocorrelation on long scales. A residual series is presented as an autoregressive process of an order, k, that can be much larger than 1, and the autocorrelation function of the processes is calculated by solving the system of the Yule–Walker equations. Given the autocorrelation function, the autocorrelation matrix is constructed which enters the formulas for estimates of regression coefficients and their errors. The efficiency of the method is demonstrated on the base of the multiple regression analysis of data of 26-year measurements of the column NO2 contents at the Zvenigorod Research Station of the Institute of Atmospheric Physics. Estimates of regression coefficients and their errors depend on the autoregression order k. At first the error increases with increasing k. Then it approaches its maximum and thereafter begins to decrease. In the case of NO2 at the Zvenigorod Station the error more than doubled in its maximum compared to the beginning value. The decrease in the error after approaching the maximum stops if k approaches the value such that the autoregressive process of this order allows accounting for important features of the autocorrelation function of the residual series. Estimates have been obtained of seasonally dependent linear trends and effects on NO2 of nature factors such that the 11-year solar cycle, the quasi-biennial oscillation, the North Atlantic Oscillation and other.

Publisher

The Russian Academy of Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Russian Investigations of Atmospheric Ozone and its Precursors in 2019–2022;Известия Российской академии наук. Физика атмосферы и океана;2023-12-01

2. МНОГОЛЕТНИЕ ИЗМЕРЕНИЯ ОБЩЕГО СОДЕРЖАНИЯ NO2 И О3 НА СТАНЦИЯХ ИФА ИМ. А.М. ОБУХОВА РАН: МЕТОДЫ НАБЛЮДЕНИЙ, ДОЛГОВРЕМЕННЫЕ ТРЕНДЫ И МЕЖГОДОВЫЕ ВАРИАЦИИ ПРИМЕСЕЙ;XXVIII Международный симпозиум «Оптика атмосферы и океана. Физика атмосферы»;2022-06-22

3. ТРЕНДЫ ОБЩЕГО, ТРОПОСФЕРНОГО И СТРАТОСФЕРНОГО СОДЕРЖАНИЯ NO2 ПО РЕЗУЛЬТАТАМ НАЗЕМНЫХ И СПУТНИКОВЫХ (OMI) ИЗМЕРЕНИЙ;XXVIII Международный симпозиум «Оптика атмосферы и океана. Физика атмосферы»;2022-06-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3