An Industrial Data-Based Model to Reduce Octane Number Loss of Refined Gasoline for S Zorb Process

Author:

Bo Chen1,Jie Wang1,Song Liu2,Fusheng Ouyang1,Da Xiong1,Mingyang Zhao2

Affiliation:

1. International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology

2. SINOPEC Shanghai Gaoqiao Petrochemical Co., Ltd

Abstract

S Zorb process is one of the main technologies for deep desulfurization of gasoline from fluid catalytic cracking (FCC) process, which by the process will also cause some research octane number (RON) loss of gasoline. Establishing a data-driven model with data mining technologies to optimize production is one of the development directions in petrochemical field. Based on the industrial data from a 1.20 Mt/a S Zorb unit in China in recent three years, 422 modeling samples and 22 modeling variables were screened out and then three data-driven models were established by back propagation neural network (BPNN), radial basis function neural network (RBFNN) and generalized regression neural network (GRNN) to predict RON of refined gasoline (r-RON). The results show that the BPNN model has the best prediction effect and generalization ability. Genetic algorithm (GA), particle swarm optimization algorithm (PSO) and simulated annealing algorithm (SA) in combination with the BPNN model respectively were used to optimize the operation variables to reduce the r-RON loss. The results indicate that the optimized performance of PSO-BPNN model is best because of its largest reduction in r-RON loss at 48.55%. The validity of the PSO-BPNN model was verified in the S Zorb unit and the research methods to establish a data-driven model for reducing r-RON loss are also worthy of reference for other S Zorb units.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3