AN EFFICIENT TECHNOLOGY OF REAL-TIME MODELING OF HEIGHT FIELD SURFACE ON THE RAY TRACING PIPELINE

Author:

TIMAKOV P. Yu.1,MIKHAYLYUK M. V.1

Affiliation:

1. Federal State Institution “Scientific Research Institute for System Analysis of the Russian Academy of Sciences”

Abstract

In this paper, based on height field surface example, an efficient technology of real-time modeling of complex procedural objects on the ray tracing pipeline (RT-pipeline) is proposed. The proposed technology doesn’t overload the I-shader stage (intersection shader), but distributes the computational load between the I-shader and the AH-shader (any-hit shader). The key innovations of the technology are the early rejection at the I-shader stage of the bounding boxes (AABBs) extracted by the RT-pipeline hardware unit, and the “transparent AABB” concept which allows transferring costly computing of the “ray-procedural object” intersection to a later AH-shader stage. The paper also describes a number of modifications that reduce the amount of such calculations. The proposed technology was implemented in a software complex in C++, GLSL and using the Vulkan API. The performance of the developed solution was studied under various ray tracing conditions on the task of modeling the surface of a detailed Puget Sound height field. The obtained results confirmed high efficiency of the developed technology and the possibility of its application in virtual environment systems, simulators, scientific visualization, etc.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3