Synthesis and Evaluation of the Antiviral Activity of 5-Halogen-2'-Azido-Substituted Derivatives of Cytidine and <i>N</i>-Hydroxycytidine on a Panel of RNA Viruses, Including SARS-CoV-2
-
Published:2023-11-01
Issue:6
Volume:49
Page:657-664
-
ISSN:1998-2860
-
Container-title:Биоорганическая химия
-
language:
-
Short-container-title:RUBI
Author:
Kamzeeva P. N.1, Kozlovskaya L. I.23, Belyaev E. S.4, Chistov A. A.1, Alferova V. A.1, Yakovchuk E. V.23, Borodulina M. O.23, Karpova E. V.2, Kolpakova E. S.2, Aralov A. V.3
Affiliation:
1. Institute of Bioorganic Chemistry, Russian Academy of Sciences 2. Chumakov Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy
of Sciences (Institute of Poliomyelitis), village of the Institute of Poliomyelitis 3. Sechenov First Moscow State Medical University 4. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science
Abstract
Coronavirus disease 2019 (COVID-19) is a new global pandemic with high morbidity and mortality caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). N-Hydroxycytidine derivatives show promise for combating viral diseases, and in particular, molnupiravir has recently been approved for emergency prophylaxis in the early stages after infection with SARS-CoV-2. Here, a scheme for the synthesis of 5‑halo-2'-azido-substituted derivatives of cytidine and N-hydroxycytidine is proposed. The synthesized compounds were tested on a panel of six RNA viruses, including SARS-CoV-2, enteroviruses, CHIKV, and HIV-1. A number of compounds were able to inhibit the reproduction of SARS-CoV-2 and CHIKV viruses in the micromolar range without noticeable cytotoxicity. The structures of the leader compounds can be used as a starting point for further design of antiviral agents.
Publisher
The Russian Academy of Sciences
Reference26 articles.
1. Holmes E.C., Goldstein S.A., Rasmussen A.L., Robertson D.L., Crits-Christoph A., Wertheim J.O., Anthony S.J., Barclay W.S., Boni M.F., Doherty P.C., Farrar J., Geoghegan J.L., Jiang X., Leibowitz J.L., Neil S.J.D., Skern T., Weiss S.R., Worobey M., Andersen K.G., Garry R.F., Rambaut A. // Cell. 2021. V. 184. P. 4848–4856. https://doi.org/10.1016/j.cell.2021.08.017 2. Triggle C.R., Bansal D., Ding H., Islam M.M., Farag E.A.B.A., Hadi H.A., Sultan A.A. // Front. Immunol. 2021. V. 12. P. 631139. https://doi.org/10.3389/fimmu.2021.631139 3. van de Leemput J., Han Z. // Mol. Cell. Biol. 2021. V. 41. P. 1–16. https://doi.org/10.1128/MCB.00185-21 4. Khudhair Z.T., Shihab M.S., Hamah-Ameen B. // Russ. J. Bioorg. Chem. 2021. V. 47. P. 789–804. https://doi.org/10.1134/S1068162021040130 5. Beigel J.H., Tomashek K.M., Dodd L.E., Mehta A.K., Zingman B.S., Kalil A.C., Hohmann E., Chu H.Y., Luetkemeyer A., Kline S., de Castilla D.L., Finberg R.W., Dierberg K., Tapson V., Hsieh L., Patterson T.F., Paredes R., Sweeney D.A., Short W.R., Touloumi G., Lye D.C., Ohmagari N., Oh M.-D., Ruiz-Palacios G.M., Benfield T., Fätkenheuer G., Kortepeter M.G., Atmar R.L., Creech C.B., Lundgren J., Babiker A.G., Pett S., Neaton J.D., Burgess T.H., Bonnett T., Green M., Makowski M., Osinusi A., Nayak S., Lane H.C. // N. Engl. J. Med. 2020. V. 383. P. 1813–1826. https://doi.org/10.1056/NEJMoa2007764
|
|