Bacteria Adaptation Mechanisms to Stress Conditions with Small Non-Coding RNAs Participation

Author:

Karpov A. S.1,Elkina D. A.2,Oretskaya T. S.2,Kubareva E. A.2

Affiliation:

1. Chemistry Department, Lomonosov Moscow State University

2. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Abstract

Despite the fact that most of the bacterial genome encodes certain protein molecules, with the development of transcriptomic technologies, many genes have been discovered that transcribe RNA which is not translated into proteins. Such RNAs are called non-coding RNAs (ncRNAs). The study of only a small number of them shows that ncRNAs often act as regulatory molecules in various cellular processes: maintenance of cell wall homeostasis, protection against pathogens, virulence, etc. A special place among them is occupied by the so-called small ncRNAs with a length of ~50–300 nucleotide residues. In most cases, they form duplexes with the mRNA of certain genes, which affects the expression of the latter. However, some ncRNAs are able to directly bind to the target protein. Similar mechanisms of action of small ncRNAs give them some advantages in regulating various cellular processes compared to protein regulatory molecules. For example, when responding to an external or internal signal through small ncRNAs, the cell will need to spend less time and resources due to the absence of the translation stage. Moreover, some ncRNAs have no complete complementarity to their target RNAs, which makes the regulation more flexible, as it allows ncRNAs to participate in the response simultaneously to various cellular signals. In this review, we considered the general mechanisms by which various small ncRNAs allow bacteria to adapt to certain stressful conditions, as well as specific examples of their action in various prokaryotic organisms.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3