Affiliation:
1. Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS
2. Institute of Protein Research, Russian Academy of Sciences
3. Institute of Cell Biophysics, Russian Academy of Sciences
4. Institute of Basic Biological Problems, Russian Academy of Sciences
Abstract
Transmission electron microscopy (TEM) with contrast staining by uranyl acetate solution was used to study morphological differences between soil humic acids (HAs) and their A, B and C + D fractions obtained using coupling preparative low-pressure size exclusion chromatography and analytical polyacrylamide gel electrophoresis. The electrophoretic mobility of fractions varied in order C + D B A. The distribution of various morphological elements between fractions showed that large structures such as vesicle-like formations 70–150 nm long and 30–80 nm wide with clear edges were found exclusively in fraction A and occupied ~55% of the TEM image area. On the other hand, long fibrils with a length of 60–100 nm, a width of 4–6 nm and a thickness of 2–3 nm, as well as their bundles with a length of 150 nm and a diameter of 30–70 nm were identified only in the C + D fraction and occupied ~59 % area of TEM images. Smaller morphological elements such as point particles with a diameter of 2–3 nm, ring particles with a diameter of 4–6 nm, worm-shaped short particles with a length of 20–30 nm, and spheroids with a diameter of 10– 30 nm were observed in all samples, but in varying quantities. Significant morphological differences between the fractions can be explained by their composition, previously established by using a few physico-chemical methods. The ratio Car(165–108 ppm)/Calk(108–0 ppm), or aromaticity index, calculated from 13C-NMR, could be one of the indicators of the various morphological structures formation. The obtained TEM results clearly confirm the supramolecular organization of soil HAs.
Publisher
The Russian Academy of Sciences
Reference45 articles.
1. Кононова М.М. // Органическое вещество почв. М.: Изд-во АН СССР, 1963. 314 с.
2. Wershaw R.L. Evaluation of Conceptual Models of Natural Organic Matter (Humus) From a Consideration of the Chemical and Biochemical Processes of Humification, U.S. Geological Survey, Reston, VA. 2004. Scientific Investigations Report No. 2004-5121.
3. Kleber M., Johnson M.G. // Adv. Agron. 2010. V. 106. Р. 77–142. https://doi.org/10.1016/S0065-2113(10)06003-7
4. Stevenson F.J. // Humus chemistry – Genesis, Composition, Reactions (2nd ed.). New York, John Wiley. 1994. 496 p.
5. Schmidt M.W.I., Torn M.S., Abiven S., Dittmar T., Guggenberger G., Janssens I.A., Kleber M., KӧgelKnabner I., Lehmann J., Manning D.A.C., Nannipieri P., Rasse D.P., Weiner S., Trumbore S.E. // Nature. 2011. V. 478. Р. 49–56. https://doi.org/10.1038/nature10386