Fluorescence Decay Analysis of the Model Compounds as an Approach to Photophysical Engineering of Fluorescent Proteins

Author:

Baleeva N. S.1,Baranov M. S.12,Bogdanov A. M.1

Affiliation:

1. Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry

2. Pirogov Russian National Research Medical University

Abstract

Studying of structure-function relationships between a chromophore and its protein environment plays a key role in photophysical engineering of fluorescent proteins (FPs), specifically, in the guided designing of their new variants with a higher fluorescence quantum yield (FQY). Known approaches to FQY increasing mostly rely on suppression of the excited state nonradiative processes, but no tools have been suggested for the tuning of the radiative rate constant (kr), which is also a potentially “adjustable” value. Here, we propose an experimental approach in which the synthetic chromophore of FP models the “fixation” of the most important radiationless constants and allows monitoring of the fluorescence lifetime flexibility (as an indicator of the kr value). As a proof-of-concept, we studied the time-resolved fluorescence behavior of the green and blue FP chromophore analogs in diverse chemical environments. The conformationally locked analog of the GFP chromophore in most cases showed monophasic fluorescence decay kinetics with a lifetime of 2.7–3.0 ns, thus adequately modeling the typical behavior of GFPs with the highest FQYs. Under the conditions of stimulated ionization of this chromophore, we observed increased (up to 4.3–4.6 ns) fluorescence lifetimes, which can be interpreted in terms of an increase in the radiative constant (kr). The conformationally locked analog of the Sirius chromophore showed biexponential fluorescence decay kinetics, partly simulating the properties of the blue FPs. In an acetic acid solution, this compound exhibited distinct fluorescent properties (elevated fluorescence intensity with a major lifetime population of ~4 ns), which can be interpreted as the emission of an unusual cationic form of the chromophore.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3