Dynamics of 24 Self-Assembling H-(RADA)<sub>4</sub>-OH Peptides Complexed in Bi-Layered Structure with Layers in <i>syn</i> and <i>anti</i> Orientation

Author:

Danilkovich A. V.1,Tikhonov D. A.23,Lipkin V. M.1

Affiliation:

1. Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS

2. Institute of Mathematical Problems of Biology – the Branch of Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

3. Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Abstract

H-(RADA)4-OH peptide in water tends to form biolgels at physiological conditions. Thusly made scaffold is formed of fibrils resulted from peptides self-assembling. Fibrils have two external hydrophilic layers, while hydrophobic one is situated between of them. Bio gels by the H-(RADA)4-OH peptides are considered to be a prominent source for designed extra cellular matrix aimed to cell cultures of different types. Little is known about detailed structure the filament structure and β-sheets peptide composition. We have designed and studied molecular dynamics of bi-layered protofilament structures with β-sheets formed of parallel or anti-parallel peptide chains. Method of molecular dynamics was used to study H-(RADA)4-OH peptide complexes at 80 and 300 K. While the most stable peptide complex was found to consist of anti-parallel peptides, had the lowest free energy and the least deviation of atom coordinates, yet another stable structure of the peptide complex was identified as 24-mer of parallel peptides with two β-sheets placed in syn orientation. These results underlined the importance of factors, directing the initial stages of the H-(RADA)4-OH peptide self-assembling in solution.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3