Novel BRICHOS-related defensin-like antimicrobial peptide from the marine polychaeta <i>Arenicola marina</i>

Author:

Safronova V. N.1,Panteleev P. V.1,Kruglikov R. N.1,Bolosov I. A.1,Finkina E. I.1,Ovchinnikova T. V.1

Affiliation:

1. Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Abstract

To date, polychaetes remain a poorly studied class of invertebrate animals in the context of clarification of their immune system functioning and, in particular, of antimicrobial peptides (AMPs) biodiversity. AMPs, also known as host defense peptides, play a key role in host protection from various pathogens and regulation of the species composition of symbiotic microbes. The study of biosynthesis of AMPs in polychaetes has revealed an interesting pattern, namely so-called BRICHOS domain in the precursor proteins of a number of such peptides. The conserved structure of this domain allows to perform a bioinformatic search for AMP precursors in polychaete transcriptomes. In this work, we found and studied a new BRICHOS-associated AMP from the lugworm Arenicola marina, which represents a structural family of defensin-like peptides stabilized by four disulfide bonds, not previously identified in marine worms. The peptide, designated as AmBRI-44a, contained 44 amino acid residues and was obtained by heterologous expression in Escherichia coli. AmBRI-44a was shown to have a specific activity against a narrow spectrum of Gram-positive bacteria and did not exhibit pronounced cytotoxic effects on eukaryotic cell line HEK293T. A potential mechanism of the antibacterial action of this peptide may be associated with inhibition of bacterial cell wall biosynthesis, as indicated by genetic and phenotypic analysis of selected AmBRI-44a-resistant bacteria Bacillus licheniformis B-511. The results obtained allow us to consider the novel peptide AmBRI-44a as a candidate compound for the development of an antibiotic agent that could potentially be effective in the treatment of infectious diseases mediated by multidrug-resistant Gram-positive bacteria.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3