Theoretical Grounding and Formation of Experimental Approaches to Hyaluronidase Structure Consolidation due to Its Computational Interactions with Shortchain Glycosaminoglycan Ligands

Author:

Maksimenko A. V.1,Beabealashvili R. Sh.1

Affiliation:

1. National Medical Research Centre of Cardiology named after academician E.I. Chazov

Abstract

The computational study of 3D model hyaluronidase interaction with shortchain glycosaminoglycan ligands demonstrated the diversity and significance of their reaction on enzyme structure. It has been realized due to electrostatic noncovalent interactions (without specific coupling with active site) inducing the perceptible conformational alterations of biocatalyst molecule. As a result of this the inactivation and stabilization of enzyme globule are observed, change of inhibition of biocatalyst by heparin. The binding of chondroitin trimers (on centers cn6, cn3, cn1) to hyaluronidase molecular surface increased the enzyme stability, binding of chondroitin sulfate trimers (on centers cs2, cs4, cs7, cs8 or cs1, cs2, cs4, cs7, cs8) decreased the inhibition of enzyme by tetramer heparin. It should be noted the importance of ligand binding for regulation of enzyme functioning and existence of multiform and multicomponent microenvironment of enzyme. The sequence of preferable coupling of ligands with hyaluronidase is elicited in our study and with its help was evaluate reality of experimental selective modification of enzyme (possibly no covalently or covalently, for instance, with chondroitin sulfate trimers on centers cs7, cs1, cs5) for experimental obtaining of stabilized enzyme forms of medical destination. The perspective approaches for this aim may be the no covalent reaction on hyaluronidase by chondroitin or chondroitin sulfate trimers as well covalent modification of biocatalyst by chondroitin sulfate trimers.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3